Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Slc11a1 (formerly NRAMP1) gene modulates both acute inflammatory reactions and pristane-induced arthritis in mice

Abstract

Mice selected for the maximum acute inflammatory reaction (AIRmax) are highly susceptible to pristane-induced arthritis (PIA), whereas mice selected for the minimum response (AIRmin) are resistant. These lines show distinct patterns of leukocyte infiltration and R and S allele frequency disequilibrium of the solute carrier family 11a member 1 (Slc11a1) gene. In order to study the interactions of the Slc11a1 R and S alleles with the inflammation modulating Quantitative Trait Loci (QTL) during PIA development, homozygous AIRmaxRR, AIRmaxSS, AIRminRR and AIRminSS lines were produced by genotype-assisted breedings. These mice received two intraperitoneal injections of 0.5 ml pristane at 60-day intervals, and the subsequent development of arthritis was assessed for 210 days. Cytokine-secreting cell profiles were investigated using enzyme-linked immunospot. Arthritis incidence in AIRmaxRR mice reached 29%, whereas PIA incidence in AIRmaxSS mice was 70% by day 180. AIRminRR mice were resistant, whereas 13.3% of AIRminSS mice became arthritic. The presence of the defective S allele also increased arthritis severity, although acute inflammation was higher in mice bearing the R allele. A predominant Th0/Th2-type response in Slc11a1SS mice was observed. These results indicate that Slc11a1 is a strong candidate for the QTL modulating acute inflammation and for PIA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Silman AJ, Pearson JE . Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 2002; 4 (Suppl 3): S265–S272.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Runstadler JA, Saila H, Savolainen A, Leirisalo-Repo M, Aho K, Tuomiehto-Wolf E et al. Association of SLC11A1(NRAMP1) with persistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum 2005; 52: 247–256.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez MR, Gonzalez-Escribano MF, Aguilar F, Valenzuela A, Garcia A, Nunez-Roldan A . Association of NRAMP1 promoter gene polymorphism with the susceptibility and radiological severity of rheumatoid arthritis. Tissue Antigens 2002; 59: 311–315.

    Article  CAS  PubMed  Google Scholar 

  4. Singal DP, Li J, Zhu Y, Zhang G . NRAMP1 gene polymorphisms in patients with rheumatoid arthritis. Tissue Antigens 2000; 55: 44–47.

    Article  CAS  PubMed  Google Scholar 

  5. Kannan K, Ortmann RA, Kimpel D . Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 2005; 12: 167–181.

    Article  PubMed  Google Scholar 

  6. Potter M, Wax JS . Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. J Immunol 1981; 127: 1591–1595.

    CAS  PubMed  Google Scholar 

  7. Thompson SJ, Thompson HS, Harper N, Day MJ, Coad AJ, Elson CJ et al. Prevention of pristane-induced arthritis by the oral administration of type II collagen. Immunology 1993; 79: 152–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stasiuk LM, Ghoraishian M, Elson CJ, Thompson SJ . Pristane-induced arthritis is CD4+ T-cell dependent. Immunology 1997; 90: 81–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thompson SJ, Hitsumoto Y, Zhang YW, Rook GA, Elson CJ . Agalactosyl IgG in pristane-induced arthritis. Pregnancy affects the incidence and severity of arthritis and the glycosylation status of IgG. Clin Exp Immunol 1992; 89: 434–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thompson SJ, Rook GA, Brealey RJ, van der ZR, Elson CJ . Autoimmune reactions to heat-shock proteins in pristane-induced arthritis. Eur J Immunol 1990; 20: 2479–2484.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson SJ, Francis JN, Siew LK, Webb GR, Jenner PJ, Colston MJ et al. An immunodominant epitope from mycobacterial 65-kDa heat shock protein protects against pristane-induced arthritis. J Immunol 1998; 160: 4628–4634.

    CAS  PubMed  Google Scholar 

  12. Thompson SJ, Elson CJ . Susceptibility to pristane-induced arthritis is altered with changes in bowel flora. Immunol Lett 1993; 36: 227–231.

    Article  CAS  PubMed  Google Scholar 

  13. Ibanez OM, Stiffel C, Ribeiro OG, Cabrera WK, Massa S, De Franco M et al. Genetics of nonspecific immunity: I. Bidirectional selective breeding of lines of mice endowed with maximal or minimal inflammatory responsiveness. Eur J Immunol 1992; 22: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  14. Vigar ND, Cabrera WH, Araujo LM, Ribeiro OG, Ogata TR, Siqueira M et al. Pristane-induced arthritis in mice selected for maximal or minimal acute inflammatory reaction. Eur J Immunol 2000; 30: 431–437.

    Article  CAS  PubMed  Google Scholar 

  15. Wooley PH, Sud S, Whalen JD, Nasser S . Pristane-induced arthritis in mice. V. Susceptibility to pristane-induced arthritis is determined by the genetic regulation of the T cell repertoire. Arthritis Rheum 1998; 41: 2022–2031.

    Article  CAS  PubMed  Google Scholar 

  16. Shaw MA, Clayton D, Blackwell JM . Analysis of the candidate gene NRAMP1 in the first 61 ARC National Repository families for rheumatoid arthritis. J Rheumatol 1997; 24: 212–214.

    CAS  PubMed  Google Scholar 

  17. Canonne-Hergaux F, Gruenheid S, Govoni G, Gros P . The Nramp1 protein and its role in resistance to infection and macrophage function. Proc Assoc Am Physicians 1999; 111: 283–289.

    Article  CAS  PubMed  Google Scholar 

  18. Fritsche G, Dlaska M, Barton H, Theurl I, Garimorth K, Weiss G . Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. J Immunol 2003; 171: 1994–1998.

    Article  CAS  PubMed  Google Scholar 

  19. Lalmanach AC, Montagne A, Menanteau P, Lantier F . Effect of the mouse Nramp1 genotype on the expression of IFN-gamma gene in early response to Salmonella infection. Microbes Infect 2001; 3: 639–644.

    Article  CAS  PubMed  Google Scholar 

  20. Wojciechowski W, DeSanctis J, Skamene E, Radzioch D . Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette-Guerin involves class II transactivator and depends on the Nramp1 gene. J Immunol 1999; 163: 2688–2696.

    CAS  PubMed  Google Scholar 

  21. Fortier A, Min-Oo G, Forbes J, Lam-Yuk-Tseung S, Gros P . Single gene effects in mouse models of host: pathogen interactions. J Leukoc Biol 2005; 77: 868–877.

    Article  CAS  PubMed  Google Scholar 

  22. Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P . The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele. Infect Immun 1996; 64: 2923–2929.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaharik ML, Cullen VL, Fung AM, Libby SJ, Kujat Cloy SL, Coburn B et al. The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun 2004; 72: 5522–5525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Araujo LM, Ribeiro OG, Siqueira M, De Franco M, Starobinas N, Massa S et al. Innate resistance to infection by intracellular bacterial pathogens differs in mice selected for maximal or minimal acute inflammatory response. Eur J Immunol 1998; 28: 2913–2920.

    Article  CAS  PubMed  Google Scholar 

  25. Chia R, Achilli F, Festing MF, Fisher EM . The origins and uses of mouse outbred stocks. Nat Genet 2005; 37: 1181–1186.

    Article  CAS  PubMed  Google Scholar 

  26. Biozzi G, Ribeiro OG, Saran A, Araujo LM, Maria D, De Franco M et al. Effect of genetic modification of acute inflammatory responsiveness on tumorigenesis in the mouse. Carcinogenesis 1998; 19: 337–346.

    Article  CAS  PubMed  Google Scholar 

  27. Jensen JR, Peters LC, Borrego A, Ribeiro OG, Cabrera WK, Starobinas N et al. Involvement of antibody production quantitative trait loci in the susceptibility to pristane-induced arthritis in the mouse. Genes Immun 2006; 7: 44–50.

    Article  CAS  PubMed  Google Scholar 

  28. Roper RJ, Weis JJ, McCracken BA, Green CB, Ma Y, Weber KS et al. Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2001; 2: 388–397.

    Article  CAS  PubMed  Google Scholar 

  29. Glant TT, Adarichev VA, Nesterovitch AB, Szarto S, Oswald JP, Jacobs JJ et al. Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci 2004; 327: 188–195.

    Article  CAS  PubMed  Google Scholar 

  30. Adarichev VA, Valdez JC, Bardos T, Finnegan A, Mikecz K, Glant TT . Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J Immunol 2003; 170: 2283–2292.

    Article  CAS  PubMed  Google Scholar 

  31. Adarichev VA, Vermes C, Hanyecz A, Mikecz K, Bremer EG, Glant TT . Gene expression profiling in murine autoimmune arthritis during the initiation and progression of joint inflammation. Arthritis Res Ther 2005; 7: R196–R207.

    Article  CAS  PubMed  Google Scholar 

  32. Goldring MB . The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 1999; 40: 1–11.

    Article  CAS  PubMed  Google Scholar 

  33. Santos-Junior RR, Sartori A, De Franco M, Ribeiro OG, Coelho-Castelo AA, Bonato V et al. Immunomodulation and protection induced by DNA-hsp65 vaccination in an animal model of arthritis. Hum Gene Ther 2005; 16: 1338–1345.

    Article  CAS  PubMed  Google Scholar 

  34. Beech JT, Siew LK, Ghoraishian M, Stasiuk LM, Elson CJ, Thompson SJ . CD4+ Th2 cells specific for mycobacterial 65-kilodalton heat shock protein protect against pristane-induced arthritis. J Immunol 1997; 159: 3692–3697.

    CAS  PubMed  Google Scholar 

  35. De Franco M, Gille-Perramant MF, Mevel JC, Couderc J . T helper subset involvement in two high antibody responder lines of mice (Biozzi mice): HI (susceptible) and HII (resistant) to collagen-induced arthritis. Eur J Immunol 1995; 25: 132–136.

    Article  CAS  PubMed  Google Scholar 

  36. Soo SS, Villarreal-Ramos B, Khan CMA, Hormaeche CE, Blackwell J . Genetic control of immune response to recombinant antigens carried by an attenuated Salmonella typhimurium vaccine strain: Nramp1 influences T-helper subset responses and protection against leishmanial challenge. Infect Immun 1998; 66: 1910–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Caron J, Lariviere L, Nacache M, Tam M, Stevenson MM, McKerly C et al. Influence of Slc11a1 on the outcome of Salmonella enterica serovar Enteritidis infection in mice is associated with Th polarization. Infect Immun 2006; 74: 2787–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weintraub BC, Eckmann L, Okamoto S, Hense M, Hedrick SM, Fierer J . Role of alphabeta and gammadelta T cells in the host response to Salmonella infection as demonstrated in T-cell-receptor-deficient mice of defined Ity genotypes. Infect Immun 1997; 65: 2306–2312.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M De Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, L., Jensen, J., Borrego, A. et al. Slc11a1 (formerly NRAMP1) gene modulates both acute inflammatory reactions and pristane-induced arthritis in mice. Genes Immun 8, 51–56 (2007). https://doi.org/10.1038/sj.gene.6364358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364358

Keywords

This article is cited by

Search

Quick links