Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic susceptibility to PolyI:C-induced IFNα/β-dependent accelerated disease in lupus-prone mice

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology. Associations between viral infections and the onset of SLE have been suggested, and recent studies have provided evidence that type I interferons (IFNα/β) might play a role in the SLE disease process. Viruses and interferons have also been implicated in mouse models of SLE. We generated a model of accelerated proteinuria, in which lupus-prone mice were injected repeatedly with polyinosinic:polycytidylic acid (polyI:C), mimicking exposure to virus-derived double stranded RNA (dsRNA), leading to the production of IFNα/β. PolyI:C-treated (B6.Nba2 × NZW)F1 and (B6 × NZW)F1 hybrid mice developed significantly increased levels of anti-dsDNA autoantibodies, characteristic of lupus. Most significantly, polyI:C-treated (B6.Nba2 × NZW)F1 mice, but not (B6 × NZW)F1 or parental strains, developed lupus-like nephritis in an accelerated fashion, which was dependent on IFNα/β and associated with elevated deposition of total IgG, IgG2a and complement factor C3 in the glomerular capillary walls. These data suggest that reagents, which increase the levels of endogenous IFNα/β (directly or indirectly), can accelerate the course of lupus-like nephritis, the development of which is dependent on the presence of both NZW- and Nba2-encoded genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ANA:

antinuclear autoantibody

B6:

C57BL/6

ds:

double stranded

EBV:

Epstein–Barr virus

IC:

immune complex

IFNα/β:

type I interferons

Ig:

immunoglobulin

Nba2 :

New Zealand Black Autoimmunity 2

NZB:

New Zealand Black

NZW:

New Zealand White

pI:C:

polyI:C

SLE:

systemic lupus erythematosus

References

  1. Kotzin BL, West SG . Systemic lupus erythrematosus. In: Rich R, Shearer WT, Kotzin BL, Schroeder Jr HW (eds). Clinical Immunology. Principles and Practice. Mosby International Limited: Philadelphia, PA, 2001, pp 60.1–60.24.

    Google Scholar 

  2. Vyse TJ, Kotzin BL . Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol 1998; 16: 261–292.

    Article  CAS  Google Scholar 

  3. Wakeland EK, Liu K, Graham RR, Behrens TW . Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001; 15: 397–408.

    Article  CAS  Google Scholar 

  4. Stohl W, Xu D, Kim KS, Koss MN, Jørgensen T, Deocharan B et al. BAFF overexpression and accelerated glomerular disease in mice with an incomplete genetic predisposition to systemic lupus erythematosus. Arthritis Rheum 2005; 52: 2080–2091.

    Article  CAS  Google Scholar 

  5. Gubbels MR, Jørgensen TN, Metzger TE, Menze K, Steele H, Flannery SA et al. Effects of MHC and gender on lupus-like autoimmunity in Nba2 congenic mice. J Immunol 2005; 175: 6190–6196.

    Article  CAS  Google Scholar 

  6. Xie C, Zhou XJ, Liu X, Mohan C . Enhanced susceptibility to end-organ disease in the lupus-facilitating NZW mouse strain. Arthritis Rheum 2003; 48: 1080–1092.

    Article  CAS  Google Scholar 

  7. Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S, Peltz G et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001; 15: 435–443.

    Article  CAS  Google Scholar 

  8. Santiago-Raber ML, Baccala R, Haraldsson KM, Choubey D, Stewart TA, Kono DH et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 2003; 197: 777–788.

    Article  CAS  Google Scholar 

  9. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J . Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001; 294: 1540–1543.

    Article  CAS  Google Scholar 

  10. Braun D, Geraldes P, Demengeot J . Type I Interferon controls the onset and severity of autoimmune manifestations in lpr mice. J Autoimmun 2003; 20: 15–25.

    Article  CAS  Google Scholar 

  11. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    Article  CAS  Google Scholar 

  12. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003; 197: 711–723.

    Article  CAS  Google Scholar 

  13. Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK . Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005; 52: 1491–1503.

    Article  CAS  Google Scholar 

  14. Mathian A, Weinberg A, Gallegos M, Banchereau J, Koutouzov S . IFN-α induces early lethal lupus in preautoimmune (New Zealand Black × New Zealand White)F1 but not in BALB/c mice. J Immunol 2005; 174: 2499–2506.

    Article  CAS  Google Scholar 

  15. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  Google Scholar 

  16. Clemens M, Elia A . The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 1997; 17: 503–524.

    Article  CAS  Google Scholar 

  17. Honda K, Sakaguchi S, Nakajima C, Watanabe A, Yanai H, Matsumoto M et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci USA 2003; 100: 10872–10877.

    Article  CAS  Google Scholar 

  18. Icely PL, Gros P, Bergeron JJ, Devault A, Afar DE, Bell JC . TIK, a novel serine/threonine kinase, is recognized by antibodies directed against phosphotyrosine. J Biol Chem 1991; 266: 16073–16077.

    CAS  PubMed  Google Scholar 

  19. Halloran PF, Urmson J, Van der Meide PH, Autenried P . Regulation of MHC expression in vivo. II. IFN-α/β inducers and recombinant IFN-α modulate MHC antigen expression in mouse tissues. J Immunol 1989; 142: 4241–4247.

    CAS  PubMed  Google Scholar 

  20. Fan H, Cook JA . Molecular mechanisms of endotoxin tolerance. J Endotox Res 2004; 10: 71–84.

    Article  CAS  Google Scholar 

  21. Dalpke AH, Lehner MD, Hartung T, Heeg K . Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 2005; 116: 203–212.

    Article  CAS  Google Scholar 

  22. Nath KA . Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992; 20: 1–17.

    Article  CAS  Google Scholar 

  23. Peng SL, Szabo SJ, Glimcher LH . T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA 2002; 99: 5545–5550.

    Article  CAS  Google Scholar 

  24. Finkelman FD, Svetic A, Gresser I, Snapper C, Holmes J, Trotta PP et al. Regulation by interferon α of immunoglobulin isotype selection and lymphokine production in mice. J Exp Med 1991; 174: 1179–1188.

    Article  CAS  Google Scholar 

  25. Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF . Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 2001; 14: 461–470.

    Article  CAS  Google Scholar 

  26. Martin RM, Brady JL, Lew AM . The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods 1998; 212: 187–192.

    Article  CAS  Google Scholar 

  27. Waters ST, McDuffie M, Bagavant H, Deshmukh US, Gaskin F, Jiang C et al. Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis. J Exp Med 2004; 199: 255–264.

    Article  CAS  Google Scholar 

  28. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  Google Scholar 

  29. Smith PL, Lombardi G, Foster GR . Type I interferons and the innate immune response – more than just antiviral cytokines. Mol Immunol 2005; 42: 869–877.

    Article  CAS  Google Scholar 

  30. Izui S, McConahey PJ, Clark JP, Hang LM, Hara I, Dixon FJ . Retroviral gp70 immune complexes in NZB × NZW F2 mice with murine lupus nephritis. J Exp Med 1981; 154: 517–528.

    Article  CAS  Google Scholar 

  31. Maruyama N, Furukawa F, Nakai Y, Sasaki Y, Ohta K, Ozaki S et al. Genetic studies of autoimmunity in New Zealand mice. IV. Contribution of NZB and NZW genes to the spontaneous occurrence of retroviral gp70 immune complexes in (NZB × NZW)F1 hybrid and the correlation to renal disease. J Immunol 1983; 130: 740–746.

    CAS  PubMed  Google Scholar 

  32. Patole PS, Grone HJ, Segerer S, Ciubar R, Belemezova E, Henger A et al. Viral double-stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol 2005; 16: 1326–1338.

    Article  CAS  Google Scholar 

  33. Dikopoulos N, Bertoletti A, Kroger A, Hauser H, Schirmbeck R, Reimann J . Type I IFN Negatively regulates CD8+ T cell responses through IL-10-producing CD4+ T regulatory 1 cells. J Immunol 2005; 174: 99–109.

    Article  CAS  Google Scholar 

  34. Morel L, Tian XH, Croker BP, Wakeland EK . Epistatic modifiers of autoimmunity in a murine model of lupus nephritis. Immunity 1999; 11: 131–139.

    Article  CAS  Google Scholar 

  35. Bygrave AE, Rose KL, Cortes-Hernandez J, Warren J, Rigby RJ, Cook HT et al. Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. PLoS Biol 2004; 2: e243.

    Article  Google Scholar 

  36. Moon U, Park S, Oh S, Kim WU, Park SH, Lee SH et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein–Barr virus load in blood. Arthritis Res Ther 2004; 6: R295–R302.

    Article  CAS  Google Scholar 

  37. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA . Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 2005; 11: 85–89.

    Article  CAS  Google Scholar 

  38. Zhu J . Cytomegalovirus infection induces expression of 60 kD/Ro antigen on human keratinocytes. Lupus 1995; 4: 396–406.

    Article  CAS  Google Scholar 

  39. Gross AJ, Hochberg D, Rand WM, Thorley-Lawson DA . EBV and systemic lupus erythematosus: a new perspective. J Immunol 2005; 174: 6599–6607.

    Article  CAS  Google Scholar 

  40. Morel L, Mohan C, Yu Y, Croker BP, Tian N, Deng A et al. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J Immunol 1997; 158: 6019–6028.

    CAS  Google Scholar 

  41. Sobel ES, Satoh M, Chen Y, Wakeland EK, Morel L . The major murine systemic lupus erythematosus susceptibility locus Sle1 results in abnormal functions of both B and T cells. J Immunol 2002; 169: 2694–2700.

    Article  CAS  Google Scholar 

  42. Vyse TJ, Rozzo SJ, Drake CG, Izui S, Kotzin BL . Control of multiple autoantibodies linked with a lupus nephritis susceptibility locus in New Zealand black mice. J Immunol 1997; 158: 5566–5574.

    CAS  Google Scholar 

  43. Vyse TJ, Drake CG, Rozzo SJ, Roper E, Izui S, Kotzin BL . Genetic linkage of IgG autoantibody production in relation to lupus nephritis in New Zealand hybrid mice. J Clin Invest 1996; 98: 1762–1772.

    Article  CAS  Google Scholar 

  44. Cohen PL, Eisenberg RA . Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991; 9: 243–269.

    Article  CAS  Google Scholar 

  45. Bickerstaff MC, Botto M, Hutchinson WL, Herbert J, Tennent GA, Bybee A et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 1999; 5: 694–697.

    Article  CAS  Google Scholar 

  46. Choubey D, Kotzin BL . Interferon-inducible p202 in the susceptibility to systemic lupus. Front Biosci 2002; 7: e252–e262.

    Article  CAS  Google Scholar 

  47. Asefa B, Klarmann KD, Copeland NG, Gilbert DJ, Jenkins NA, Keller JR . The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells, Molecules, Dis 2004; 32: 155–167.

    Article  CAS  Google Scholar 

  48. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004; 21: 769–780.

    Article  CAS  Google Scholar 

  49. Bolland S, Ravetch JV . Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 2000; 13: 277–285.

    Article  CAS  Google Scholar 

  50. McGaha TL, Sorrentino B, Ravetch JV . Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 2005; 307: 590–593.

    Article  CAS  Google Scholar 

  51. Yang YL, Guo L, Xu S, Holland CA, Kitamura T, Hunter K et al. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat Genet 1999; 21: 216–219.

    Article  Google Scholar 

  52. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 2001; 108: 1621–1629.

    Article  CAS  Google Scholar 

  53. Shimizu S, Nakashima H, Masutani K, Inoue Y, Miyake K, Akahoshi M et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates nephritis in MRL/lpr mice. Rheumatology 2004; 43: 1121–1128.

    Article  CAS  Google Scholar 

  54. Reilly CM, Olgun S, Goodwin D, Gogal Jr RM, Santo A, Romesburg JW et al. Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice. Eur J Immunol 2006; 36: 1296–1308.

    Article  CAS  Google Scholar 

  55. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM et al. Functional role of type I and type II interferons in antiviral defense. Science 1994; 264: 1918–1921.

    Article  CAS  Google Scholar 

  56. Merino R, Fossati L, Lacour M, Lemoine R, Higaki M, Izui S . H-2-linked control of the Yaa gene-induced acceleration of lupus-like autoimmune disease in BXSB mice. Eur J Immunol 1992; 22: 295–299.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by The Denver Autoimmunity Center of Excellence (#AI46374-07) (TNJ, PM, BLK) and a grant from the Swiss National Foundation for Scientific Research (SI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T N Jørgensen.

Additional information

Financial interests

The authors have no financial interests relevant to the research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, T., Thurman, J., Izui, S. et al. Genetic susceptibility to PolyI:C-induced IFNα/β-dependent accelerated disease in lupus-prone mice. Genes Immun 7, 555–567 (2006). https://doi.org/10.1038/sj.gene.6364329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364329

Keywords

This article is cited by

Search

Quick links