Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Variants of CCR5, which are permissive for HIV-1 infection, show distinct functional responses to CCL3, CCL4 and CCL5

Abstract

CCR5 is one of the primary coreceptors for Env-mediated fusion between cells and human immunodeficiency virus type 1 (HIV-1). Analyses of CCR5 variants in cohorts of HIV-1 high-risk individuals led to the identification of multiple single amino-acid substitutions, which may have functional consequences. This study focused on eight naturally occurring allelic variants located between amino-acid residues 60 and 334 of CCR5. All studied allelic variants were highly expressed on the cell surface of HEK-293 cells and permissive for HIV-1 infection. Variant G301V showed 3.5-fold increase in 50% effective concentration (EC50) for CCL4 (MIP 1beta) in a competitive binding assay. There was also a significant reduction in CCL5 (RANTES) EC50 for the R223Q, A335V and Y339F variants. The most unexpected functional abnormality was exhibited by the R60S variant that exhibited a loss of ligand-induced desensitization in chemotaxis assays, but showed normal CCL4 and CCL5 binding avidity. This mutation is located in the first intracellular loop, a domain that has not previously been shown to be involved in receptor desensitization. In conclusion, our results support earlier studies showing that these naturally occurring point mutations do not limit HIV-1 infection, and indicated that single amino-acid changes can have unexpected functional consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Feng Y, Broder CC, Kennedy PE, Berger EA . HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor [see comments]. Science 1996; 272: 872–877.

    Article  CAS  PubMed  Google Scholar 

  2. Moore JP, Trkola A, Dragic T . Co-receptors for HIV-1 entry. Curr Opin Immunol 1997; 9: 551–562.

    Article  CAS  PubMed  Google Scholar 

  3. Littman DR . Chemokine receptors: keys to AIDS pathogenesis? Cell 1998; 93: 677–680.

    Article  CAS  PubMed  Google Scholar 

  4. Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF . Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem 1996; 271: 17161–17166.

    Article  CAS  PubMed  Google Scholar 

  5. Zlotnik A, Yoshie O . Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.

    Article  CAS  PubMed  Google Scholar 

  6. Gong W, Howard OM, Turpin JA et al. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. J Biol Chem 1998; 273: 4289–4292.

    Article  CAS  PubMed  Google Scholar 

  7. Ruffing N, Sullivan N, Sharmeen L, Sodroski J, Wu L . CCR5 has an expanded ligand-binding repertoire and is the primary receptor used by MCP-2 on activated T cells. Cell Immunol 1998; 189: 160–168.

    Article  CAS  PubMed  Google Scholar 

  8. Mackay CR . CCL3L1 dose and HIV-1 susceptibility. Trends Mol Med 2005; 11: 203–206.

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez E, Kulkarni H, Bolivar H et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 307: 1434–1440.

    Article  CAS  PubMed  Google Scholar 

  10. Struyf S, Menten P, Lenaerts JP et al. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 2001; 31: 2170–2178.

    Article  CAS  PubMed  Google Scholar 

  11. Howard OM, Turpin JA, Goldman R, Modi WS . Functional redundancy of the human CCL4 and CCL4L1 chemokine genes. Biochem Biophys Res Commun 2004; 320: 927–931.

    Article  CAS  PubMed  Google Scholar 

  12. Zagury D, Lachgar A, Chams V et al. C-C chemokines, pivotal in protection against HIV type 1 infection. Proc Natl Acad Sci USA 1998; 95: 3857–3861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gudipaty L, Munetz J, Verhoef PA, Dubyak GR . Essential role for Ca2+ in regulation of IL-1beta secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells. Am J Physiol Cell Physiol 2003; 285: C286–C299.

    Article  CAS  PubMed  Google Scholar 

  14. Murphy PM, Baggiolini M, Charo IF et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52: 145–176.

    CAS  PubMed  Google Scholar 

  15. Samson M, Libert F, Doranz BJ et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–725.

    Article  CAS  PubMed  Google Scholar 

  16. Dean M, Carrington M, Winkler C et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study [see comments] [published erratum appears in Science 1996 Nov 15;274(5290):1069]. Science 1996; 273: 1856–1862.

    Article  CAS  PubMed  Google Scholar 

  17. Blanpain C, Lee B, Tackoen M et al. Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood 2000; 96: 1638–1645.

    CAS  PubMed  Google Scholar 

  18. Howard OM, Shirakawa AK, Turpin JA et al. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 co-receptor and ligand binding function. J Biol Chem 1999; 274: 16228–16234.

    Article  CAS  PubMed  Google Scholar 

  19. Zimmerman PA, Buckler-White A, Alkhatib G et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 1997; 3: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dean M, Jacobson LP, McFarlane G et al. Reduced risk of AIDS lymphoma in individuals heterozygous for the CCR5-delta32 mutation. Cancer Res 1999; 59: 3561–3564.

    CAS  PubMed  Google Scholar 

  21. Rabkin CS, Yang Q, Goedert JJ, Nguyen G, Mitsuya H, Sei S . Chemokine and chemokine receptor gene variants and risk of non-Hodgkin's lymphoma in human immunodeficiency virus-1-infected individuals. Blood 1999; 93: 1838–1842.

    CAS  PubMed  Google Scholar 

  22. Barcellos LF, Schito AM, Rimmler JB et al. CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 2000; 51: 281–288.

    Article  CAS  PubMed  Google Scholar 

  23. Sellebjerg F, Madsen HO, Jensen CV, Jensen J, Garred P . CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 2000; 102: 98–106.

    Article  CAS  PubMed  Google Scholar 

  24. Zang YC, Samanta AK, Halder JB et al. Aberrant T cell migration toward RANTES and MIP-1 alpha in patients with multiple sclerosis. Overexpression of chemokine receptor CCR5. Brain 2000; 123 (Part 9): 1874–1882.

    Article  PubMed  Google Scholar 

  25. Gomez-Reino JJ, Pablos JL, Carreira PE et al. Association of rheumatoid arthritis with a functional chemokine receptor, CCR5. Arthritis Rheum 1999; 42: 989–992.

    Article  CAS  PubMed  Google Scholar 

  26. Garred P, Madsen HO, Petersen J et al. CC chemokine receptor 5 polymorphism in rheumatoid arthritis. J Rheumatol 1998; 25: 1462–1465.

    CAS  PubMed  Google Scholar 

  27. Herfarth H, Pollok-Kopp B, Goke M, Press A, Oppermann M . Polymorphism of CC chemokine receptors CCR2 and CCR5 in Crohn's disease. Immunol Lett 2001; 77: 113–117.

    Article  CAS  PubMed  Google Scholar 

  28. Petrek M, Drabek J, Kolek V et al. CC chemokine receptor gene polymorphisms in Czech patients with pulmonary sarcoidosis. Am J Respir Crit Care Med 2000; 162 (Part 1): 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  29. Eri R, Jonsson JR, Pandeya N et al. CCR5-Delta32 mutation is strongly associated with primary sclerosing cholangitis. Genes Immun 2004; 5: 444–450.

    Article  CAS  PubMed  Google Scholar 

  30. Ahlenstiel G, Woitas RP, Rockstroh J, Spengler U . CC-chemokine receptor 5 (CCR5) in hepatitis C—at the crossroads of the antiviral immune response? J Antimicrob Chemother 2004; 53: 895–898.

    Article  CAS  PubMed  Google Scholar 

  31. Andres PG, Beck PL, Mizoguchi E et al. Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J Immunol 2000; 164: 6303–6312.

    Article  CAS  PubMed  Google Scholar 

  32. Nansen A, Christensen JP, Andreasen SO, Bartholdy C, Christensen JE, Thomsen AR . The role of CC chemokine receptor 5 in antiviral immunity. Blood 2002; 99: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  33. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N . Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 2000; 156: 1951–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carrington M, Kissner T, Gerrard B, Ivanov S, O'Brien SJ, Dean M . Novel alleles of the chemokine-receptor gene CCR5. Am J Hum Genet 1997; 61: 1261–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ansari-Lari MA, Liu XM, Metzker ML, Rut AR, Gibbs RA . The extent of genetic variation in the CCR5 gene. Nat Genet 1997; 16: 221–222.

    Article  CAS  PubMed  Google Scholar 

  36. Rabut GE, Konner JA, Kajumo F, Moore JP, Dragic T . Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. J Virol 1998; 72: 3464–3468.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dragic T, Trkola A, Lin SW et al. Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. J Virol 1998; 72: 279–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Blanpain C, Lee B, Vakili J et al. Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem 1999; 274: 18902–18908.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao XY, Lee SS, Wong KH et al. A novel CCR5 mutation selectively affects immunoreactivity and fusogenic property of the HIV co-receptor. AIDS 2004; 18: 1729–1732.

    Article  CAS  PubMed  Google Scholar 

  40. Howard OM, Korte T, Tarasova NI et al. Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. J Leukocyte Biol 1998; 64: 6–13.

    Article  CAS  PubMed  Google Scholar 

  41. Chabot DJ, Chen H, Dimitrov DS, Broder CC . N-linked glycosylation of CXCR4 masks coreceptor function for CCR5-dependent human immunodeficiency virus type 1 isolates. J Virol 2000; 74: 4404–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Signoret N, Christophe T, Oppermann M, Marsh M . pH-independent endocytic cycling of the chemokine receptor CCR5. Traffic 2004; 5: 529–543.

    Article  CAS  PubMed  Google Scholar 

  43. Signoret N, Hewlett L, Wavre S, Pelchen-Matthews A, Oppermann M, Marsh M . Agonist-induced endocytosis of chemokine receptor 5 (CCR5) is clathrin-dependent. Mol Biol Cell 2005; 16: 902–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chelli M, Alizon M . Rescue of HIV-1 receptor function through cooperation between different forms of the CCR5 chemokine receptor. J Biol Chem 2002; 277: 39388–39396.

    Article  CAS  PubMed  Google Scholar 

  45. Shioda T, Nakayama EE, Tanaka Y et al. Naturally occurring deletional mutation in the C-terminal cytoplasmic tail of CCR5 affects surface trafficking of CCR5. J Virol 2001; 75: 3462–3468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kraft K, Olbrich H, Majoul I, Mack M, Proudfoot A, Oppermann M . Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J Biol Chem 2001; 276: 34408–34418.

    Article  CAS  PubMed  Google Scholar 

  47. Venkatesan S, Petrovic A, Locati M, Kim YO, Weissman D, Murphy PM . A membrane-proximal basic domain and cysteine cluster in the C-terminal tail of CCR5 constitute a bipartite motif critical for cell surface expression. J Biol Chem 2001; 276: 40133–40145.

    Article  CAS  PubMed  Google Scholar 

  48. Brandt SM, Mariani R, Holland AU, Hope TJ, Landau NR . Association of chemokine-mediated block to HIV entry with coreceptor internalization. J Biol Chem 2002; 277: 17291–17299.

    Article  CAS  PubMed  Google Scholar 

  49. Paterlini MG . Structure modeling of the chemokine receptor CCR5: implications for ligand binding and selectivity. Biophys J 2002; 83: 3012–3031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Antonsson L, Boketoft A, Garzino-Demo A, Olde B, Owman C . Molecular mapping of epitopes for interaction of HIV-1 as well as natural ligands with the chemokine receptors, CCR5 and CXCR4. AIDS 2003; 17: 2571–2579.

    Article  CAS  PubMed  Google Scholar 

  51. McDermott DH, Beecroft MJ, Kleeberger CA et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 2000; 14: 2671–2678.

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez E, Dhanda R, Bamshad M et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1alpha: impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci USA 2001; 98: 5199–5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Youn BS, Yu KY, Alkhatib G, Kwon BS . The seventh transmembrane domain of cc chemokine receptor 5 is critical for MIP-1beta binding and receptor activation: role of MET 287. Biochem Biophys Res Commun 2001; 281: 627–633.

    Article  CAS  PubMed  Google Scholar 

  54. Tsamis F, Gavrilov S, Kajumo F et al. Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodeficiency virus type 1 entry. J Virol 2003; 77: 5201–5208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD . Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001; 41: 661–690.

    Article  CAS  PubMed  Google Scholar 

  56. Liao F, Alderson R, Su J, Ullrich SJ, Kreider BL, Farber JM . STRL22 is a receptor for the CC chemokine MIP-3alpha. Biochem Biophys Res Commun 1997; 236: 212–217.

    Article  CAS  PubMed  Google Scholar 

  57. Mueller A, Kelly E, Strange PG . Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 2002; 99: 785–791.

    Article  CAS  PubMed  Google Scholar 

  58. Roland J, Murphy BJ, Ahr B et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood 2003; 101: 399–406.

    Article  CAS  PubMed  Google Scholar 

  59. Lillard Jr JW, Singh UP, Boyaka PN, Singh S, Taub DD, McGhee JR . MIP-1alpha and MIP-1beta differentially mediate mucosal and systemic adaptive immunity. Blood 2003; 101: 807–814.

    Article  CAS  PubMed  Google Scholar 

  60. Dairaghi DJ, Franz-Bacon K, Callas E et al. Macrophage inflammatory protein-1beta induces migration and activation of human thymocytes. Blood 1998; 91: 2905–2913.

    CAS  PubMed  Google Scholar 

  61. Pollok-Kopp B, Schwarze K, Baradari VK, Oppermann M . Analysis of ligand-stimulated CC chemokine receptor 5 (CCR5) phosphorylation in intact cells using phosphosite-specific antibodies. J Biol Chem 2003; 278: 2190–2198.

    Article  CAS  PubMed  Google Scholar 

  62. Howard OM, Kirken RA, Garcia GG, Hackett RH, Farrar WL . Structural domains of interleukin-2 receptor beta critical for signal transduction: kinase association and nuclear complex-formation. Biochem J 1995; 306: 217–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS . HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990; 61: 213–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Clay Osterling, Carol Lockman-Smith of Southern Research Institute, Frederick and Doug Halverson of SAIC Frederick for technical support. Dr JJ Oppenheim has provided essential review and commentary, improving this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O M Z Howard.

Additional information

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organization imply endorsement by the US Government.

This project has been funded in whole or in part with Federal funds from the National Cancer Institute, under Contract No. N01-CO-12400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, HF., Wigmore, K., Carrington, M. et al. Variants of CCR5, which are permissive for HIV-1 infection, show distinct functional responses to CCL3, CCL4 and CCL5. Genes Immun 6, 609–619 (2005). https://doi.org/10.1038/sj.gene.6364247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364247

Keywords

This article is cited by

Search

Quick links