Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis

Abstract

The aim of present study was to elucidate the role of the interleukin (IL)-24 gene in predicting risk for plaque-type psoriasis and to describe the linkage disequilibrium (LD) pattern emerging from the genes of IL-19, IL-20 and IL-24. Genes encoding IL-19, IL-20 and IL-24 locate in the region q32 of chromosome 1. The association between the single-nucleotide polymorphisms (SNPs) or haplotypes of the IL-24 gene and the susceptibility of psoriasis was not found. However, a significant protective effect of the combined haplotype CAAAC of IL-20 and IL-24 genes against plaque-type psoriasis was established (OR 0.154). Protective effect against psoriasis was also observed with haplotype TGGGT (OR 0.591) and haplotype CGAGT (OR 0.457). Performing a comprehensive analysis using the data regarding SNPs of IL-24 gene together with the previously published data regarding IL-19 and IL-20 SNPs, we identified two haplotype blocks within the region q32 of chromosome 1. The main result of the present study is that while the IL-19/IL-20 extended haplotype CACCGGAA is a significant susceptibility factor for psoriasis (previous study), IL-20/IL-24 haplotypes CAAAC, TGGGT and CGAGT have a significant protective effect. Nevertheless, family-based studies are required to confirm the impact of IL-19, IL-20 and IL-24 genes in the genetic predisposition for psoriasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Glickman FS . Lepra, psora, psoriasis. J Am Acad Dermatol 1986; 14: 863–866.

    Article  CAS  PubMed  Google Scholar 

  2. Camp RDR . Psoriasis. In: Champion RH, Burton JL, Burns DA, Breathnach SM (eds). Textbook of Dermatology. Blackwell Science: Oxford, 1992, pp 1589–1649.

    Google Scholar 

  3. Christophers E . Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol 2001; 26: 314–320.

    Article  CAS  PubMed  Google Scholar 

  4. Trembath RC, Clough RL, Rosbotham JL et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 1997; 6: 813–820.

    Article  CAS  PubMed  Google Scholar 

  5. Nair RP, Henseler T, Jenisch S et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet 1997; 6: 1349–1356.

    Article  CAS  PubMed  Google Scholar 

  6. Balendran N, Clough RL, Arguello JR et al. Characterization of the major susceptibility region for psoriasis at chromosome 6p21.3. J Invest Dermatol 1999; 113: 322–328.

    Article  CAS  PubMed  Google Scholar 

  7. Oka A, Tamiya G, Tomizawa M et al. Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene. Hum Mol Genet 1999; 8: 2165–2170.

    Article  CAS  PubMed  Google Scholar 

  8. Veal CD, Capon F, Allen MH et al. Family-based analysis using a dense single-nucleotide polymorphism-based map defines genetic variation at PSORS1, the major psoriasis-susceptibility locus. Am J Hum Genet 2002; 71: 554–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asumalahti K, Veal C, Laitinen T et al. Coding haplotype analysis supports HCR as the putative susceptibility gene for psoriasis at the MHC PSORS1 locus. Hum Mol Genet 2002; 11: 589–597.

    Article  CAS  PubMed  Google Scholar 

  10. Wandstrat A, Wakeland E . The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2001; 2: 802–809.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou X, Krueger JG, Kao MC et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63 100-element oligonucleotide array. Physiol Genom 2003; 13: 69–78.

    Article  CAS  Google Scholar 

  12. Kim JM, Brannan CI, Copeland NG et al. Structure of the mouse IL-10 gene and chromosomal localization of the mouse and human genes. J Immunol 1992; 148: 3618–3623.

    CAS  PubMed  Google Scholar 

  13. Blumberg H, Conklin D, Xu WF et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 2001; 104: 9–19.

    Article  CAS  PubMed  Google Scholar 

  14. Gallagher G, Dickensheets H, Eskdale J et al. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 2000; 1: 442–450.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  PubMed  Google Scholar 

  16. Crawley E, Kay R, Sillibourne J et al. Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthitis. Arthritis Rheum 1999; 42: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  17. Tagore A, Gonsalkorale WM, Pravica V et al. Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. Tissue Antigens 1999; 54: 386–390.

    Article  CAS  PubMed  Google Scholar 

  18. Gibson AW, Edberg JC, Wu J et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 2001; 166: 3915–3922.

    Article  CAS  PubMed  Google Scholar 

  19. Shin HD, Winkler C, Stephens JC et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA 2000; 97: 14467–14472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kingo K, Kõks S, Silm H, Vasar E . IL-10 promoter polymorphisms influence disease severity and course in psoriasis. Genes Immun 2003; 4: 455–457.

    Article  CAS  PubMed  Google Scholar 

  21. Hensen P, Asadullah K, Windemuth C et al. Interleukin-10 promoter polymorphism IL10. G and familial early onset psoriasis. Br J Dermatol 2003; 149: 381–385.

    Article  CAS  PubMed  Google Scholar 

  22. Gallagher G, Eskdale J, Jordan W et al. Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol 2004; 4: 615–626.

    Article  CAS  PubMed  Google Scholar 

  23. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC . Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 2001; 167: 3545–3549.

    Article  CAS  PubMed  Google Scholar 

  24. Parrish-Novak J, Xu W, Brender T et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor–ligand interactions mediate unique biological functions. J Biol Chem 2002; 277: 47517–47523.

    Article  CAS  PubMed  Google Scholar 

  25. Romer J, Hasselager E, Norby PL et al. Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J Invest Dermatol 2003; 121: 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  26. Kotenko SV . The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 2002; 13: 223–240.

    Article  CAS  PubMed  Google Scholar 

  27. Soo C, Shaw WW, Freymiller E et al. Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. J Cell Biochem 1999; 74: 1–10.

    Article  CAS  PubMed  Google Scholar 

  28. Ortonne JP . Aetiology and pathogenesis of psoriasis. Br J Dermatol 1996; 135 (Suppl 49): 1–5.

    Article  PubMed  Google Scholar 

  29. Piepkorn M, Pittelkow MR, Cook PW . Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol 1998; 111: 715–721.

    Article  CAS  PubMed  Google Scholar 

  30. Kõks S, Kingo K, Ratsep R et al. Combined haplotype analysis of the interleukin-19 and -20 genes: relationship to plaque-type psoriasis. Genes Immun 2004; 5: 662–667.

    Article  PubMed  Google Scholar 

  31. Kingo K, Kõks S, Nikopensius T, Silm H, Vasar E . Polymorphisms in the interleukin-20 gene: relationships to plaque-type psoriasis. Genes Immun 2004; 5: 117–121.

    Article  CAS  PubMed  Google Scholar 

  32. Capon F, Novelli G, Semprini S et al. Searching for psoriasis susceptibility genes in Italy: genome scan and evidence for a new locus on chromosome 1. J Invest Dermatol 1999; 112: 32–35.

    Article  CAS  PubMed  Google Scholar 

  33. Capon F, Semprini S, Chimenti S et al. Fine mapping of the PSORS4 psoriasis susceptibility region on chromosome 1q21. J Invest Dermatol 2001; 116: 728–730.

    Article  CAS  PubMed  Google Scholar 

  34. Fickenscher H, Hor S, Kupers H et al. The interleukin-10 family of cytokines. Trends Immunol 2002; 23: 89–96.

    Article  CAS  PubMed  Google Scholar 

  35. Ghoreschi K, Mrowietz U, Rocken M . A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses. J Mol Med 2003; 81: 471–480.

    Article  CAS  PubMed  Google Scholar 

  36. Wolk K, Kunz S, Asadullah K, Sabat R . Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 2002; 168: 5397–5402.

    Article  CAS  PubMed  Google Scholar 

  37. Caudell EG, Mumm JB, Poindexter N et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 2002; 168: 6041–6046.

    Article  CAS  PubMed  Google Scholar 

  38. Tabor HK, Risch NJ, Myers RM . Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002; 3: 391–397.

    Article  CAS  PubMed  Google Scholar 

  39. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA . Mapping complex disease loci in whole-genome association studies. Nature 2004; 429: 446–452.

    Article  CAS  PubMed  Google Scholar 

  40. Zondervan KT, Cardon LR . The complex interplay among factors that influence allelic association. Nat Rev Genet 2004; 5: 89–100.

    Article  CAS  PubMed  Google Scholar 

  41. Cardon LR, Abecasis GR . Using haplotype blocks to map human complex trait loci. Trends Genet 2003; 19: 135–140.

    Article  CAS  PubMed  Google Scholar 

  42. Kauppi L, Jeffreys AJ, Keeney S . Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 2004; 5: 413–424.

    Article  CAS  PubMed  Google Scholar 

  43. Hafler DA, Jager PL . Opinion: applying a new generation of genetic maps to understand human inflammatory disease. Nat Rev Immunol 2005; 5: 83–91.

    Article  CAS  PubMed  Google Scholar 

  44. Rioux JD, Silverberg MS, Daly MJ et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66: 1863–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crawford DC, Nickerson DA . Definition and clinical importance of haplotypes. Annu Rev Med 2005; 56: 303–320.

    Article  CAS  PubMed  Google Scholar 

  46. Smith AJ, Keen LJ, Billingham MJ et al. Extended haplotypes and linkage disequilibrium in the IL1R1–IL1A–IL1B–IL1RN gene cluster: association with knee osteoarthritis. Genes Immun 2004; 5: 451–460.

    Article  PubMed  Google Scholar 

  47. Undlien DE, Lie BA, Thorsby E . HLA complex genes in type 1 diabetes and other autoimmune diseases. Which genes are involved? Trends Genet 2001; 17: 93–100.

    Article  CAS  PubMed  Google Scholar 

  48. Gibson F, Froguel P . Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians. Diabetes 2004; 53: 2977–2983.

    Article  CAS  PubMed  Google Scholar 

  49. Laivoranta-Nyman S, Mottonen T, Hermann R et al. HLA-DR-DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis. Ann Rheum Dis 2004; 63: 1406–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Camargo JF, Correa PA, Castiblanco J, Anaya JM . Interleukin-1beta polymorphisms in Colombian patients with autoimmune rheumatic diseases. Genes Immun 2004; 5: 609–614.

    Article  CAS  PubMed  Google Scholar 

  51. Contu L, Orru S, Carcassi C et al. A psoriasis vulgaris protective gene maps close to the HLA-C locus on the EH18.2-extended haplotype. Tissue Antigens 2004; 64: 43–57.

    Article  CAS  PubMed  Google Scholar 

  52. Choonhakarn C, Romphruk A, Puapairoj C et al. Haplotype associations of the major histocompatibility complex with psoriasis in Northeastern Thais. Int J Dermatol 2002; 41: 330–334.

    Article  PubMed  Google Scholar 

  53. Kim TG, Lee HJ, Youn JI, Kim TY, Han H . The association of psoriasis with human leukocyte antigens in Korean population and the influence of age of onset and sex. J Invest Dermatol 2000; 114: 309–313.

    Article  CAS  PubMed  Google Scholar 

  54. Hensen P, Windemuth C, Huffmeier U et al. Association scan of the novel psoriasis susceptibility region on chromosome 19: evidence for both susceptible and protective loci. Exp Dermatol 2003; 12: 490–496.

    Article  CAS  PubMed  Google Scholar 

  55. Henseler T, Christophers E . Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol 1985; 13: 450–456.

    Article  CAS  PubMed  Google Scholar 

  56. Fredriksson T, Pettersson U . Severe psoriasis—oral therapy with a new retinoid. Dermatologica 1978; 157: 238–244.

    Article  CAS  PubMed  Google Scholar 

  57. Ye S, Dhillon S, Ke X, Collins AR, Day IN . An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 2001; 29: E88–8.

    Article  Google Scholar 

  58. Raymond M, Rousset F . GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 1995; 86: 284–295.

    Article  Google Scholar 

  59. Tregouet DA, Barbaux S, Escolano S et al. Specific haplotypes of the P-selectin gene are associated with myocardial infarction. Hum Mol Genet 2002; 11: 2015–2023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the target-based funding from the Estonian Ministry of Education Grant No. 0182128s02 (TARNH2128) and the Estonian Science Foundation Grant Nos. 5712 and 5688 and by the Centre of Molecular and Clinical Medicine Grant VARMC-TIPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kõks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kõks, S., Kingo, K., Vabrit, K. et al. Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis. Genes Immun 6, 407–415 (2005). https://doi.org/10.1038/sj.gene.6364216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364216

Keywords

This article is cited by

Search

Quick links