Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

DNA microarray allows molecular profiling of rheumatoid arthritis and identification of pathophysiological targets

Abstract

This study was undertaken to evaluate the possibility to obtain a molecular signature of rheumatoid arthritis (RA) comparatively osteoarthritis (OA), and to lay the bases to develop new diagnostic tools and identify new targets. Microarray technology was used for such an analysis. The gene expression profiles of synovial tissues from patients with confirmed RA, and patients with OA were established and compared. A set of 63 genes was selected, based, more specifically, on their overexpression or underexpression in RA samples compared to OA. Results for six of these genes have been verified by quantitative PCR using both samples identical to those used in the microarray experiments and entirely separate samples. Expression profile of the 48 known genes allowed the correct classification of additional RA and OA patients. Furthermore, the distinct expression of three of the selected genes was also studied by quantitative RT-PCR in cultured synovial cells. Detailed analysis of the expression profile of the selected genes provided evidence for dysregulated biological pathways, pointed out to chromosomal location and revealed novel genes potentially involved in RA. It is proposed that such an approach allows valuable diagnosis/prognostics tools in RA to be established and potential targets for combating the disease to be identified.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vervoordeldonk MJ, Tak PP . Cytokines in rheumatoid arthritis. Curr Rheumatol Rep 2002; 4: 208–217.

    Article  Google Scholar 

  2. Arend WP, Dayer JM . Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 1990; 33: 305–315.

    Article  CAS  Google Scholar 

  3. Arend WP, Dayer JM . Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 1995; 38: 151–160.

    Article  CAS  Google Scholar 

  4. Elliott MJ, Maini RN, Feldmann M et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) vs placebo in rheumatoid arthritis. Lancet 1994; 344: 1105–1110.

    Article  CAS  Google Scholar 

  5. Lard LR, Visser H, Speyer I et al. Early vs delayed treatment in patients with recent-onset rheumatoid arthritis: comparison of two cohorts who received different treatment strategies. Am J Med 2001; 111: 446–451.

    Article  CAS  Google Scholar 

  6. Goekoop YP, Allaart CF, Breedveld FC, Dijkmans BA . Combination therapy in rheumatoid arthritis. Curr Opin Rheumatol 2001; 13: 177–183.

    Article  CAS  Google Scholar 

  7. Van Der Pouw Kraan TC, Van Gaalen FA, Huizinga TW et al. Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun 2003; 4: 187–196.

    Article  CAS  Google Scholar 

  8. van der Pouw Kraan TC, van Gaalen FA, Kasperkovitz PV et al. Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum 2003; 48: 2132–2145.

    Article  CAS  Google Scholar 

  9. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  Google Scholar 

  10. Alizadeh AA, Eisen MB, Davis RE et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [see comments]. Nature 2000; 403: 503–511.

    Article  CAS  Google Scholar 

  11. Heller RA, Schena M, Chai A et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci USA 1997; 94: 2150–2155.

    Article  CAS  Google Scholar 

  12. Masuda K, Masuda R, Neidhart M et al. Molecular profile of synovial fibroblasts in rheumatoid arthritis depends on the stage of proliferation. Arthritis Res 2002; 4: R8.

    Article  Google Scholar 

  13. Neumann E, Kullmann F, Judex M et al. Identification of differentially expressed genes in rheumatoid arthritis by a combination of complementary DNA array and RNA arbitrarily primed-polymerase chain reaction. Arthritis Rheum 2002; 46: 52–63.

    Article  CAS  Google Scholar 

  14. Saraux A, Berthelot JM, Chales G et al. Ability of the American College of Rheumatology 1987 criteria to predict rheumatoid arthritis in patients with early arthritis and classification of these patients two years later. Arthritis Rheum 2001; 44: 2485–2491.

    Article  CAS  Google Scholar 

  15. Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  Google Scholar 

  16. Tamayo P, Slonim D, Mesirov J et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 1999; 96: 2907–2912.

    Article  CAS  Google Scholar 

  17. MacKay K, Eyre S, Myerscough A et al. Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum 2002; 46: 632–639.

    Article  CAS  Google Scholar 

  18. Lawrance IC, Fiocchi C, Chakravarti S . Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet 2001; 10: 445–456.

    Article  CAS  Google Scholar 

  19. Cornelis F, Faure S, Martinez M et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10746–10750.

    Article  CAS  Google Scholar 

  20. Iyer VR, Eisen MB, Ross DT et al. The transcriptional program in the response of human fibroblasts to serum. Science 1999; 283: 83–87.

    Article  CAS  Google Scholar 

  21. Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415: 436–442.

    Article  CAS  Google Scholar 

  22. Shipp MA, Ross KN, Tamayo P et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  Google Scholar 

  23. Hogasen K, Mollnes TE, Harboe M et al. Terminal complement pathway activation and low lysis inhibitors in rheumatoid arthritis synovial fluid. J Rheumatol 1995; 22: 24–28.

    CAS  PubMed  Google Scholar 

  24. Trougakos I, Gonos E . Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 2002; 34: 1430.

    Article  CAS  Google Scholar 

  25. Petropoulou C, Trougakos IP, Kolettas E, Toussaint O, Gonos ES . Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. FEBS Lett 2001; 509: 287–297.

    Article  CAS  Google Scholar 

  26. Bettuzzi S, Scorcioni F, Astancolle S et al. Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalized human prostate epithelial cells by slowing down cell cycle progression. Oncogene 2002; 21: 4328–4334.

    Article  CAS  Google Scholar 

  27. Poon S, Rybchyn MS, Easterbrook-Smith SB et al. Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 2002; 277: 39532–39540.

    Article  CAS  Google Scholar 

  28. Lee CG . RH70, a bidirectional RNA helicase, co-purifies with U1snRNP. J Biol Chem 2002; 277: 39679–39683.

    Article  CAS  Google Scholar 

  29. Maciewicz RA, Wardale RJ, Wotton SF, Duance VC, Etherington DJ . Mode of activation of the precursor to cathepsin L: implication for matrix degradation in arthritis. Biol Chem Hoppe Seyler 1990; 371 (Suppl): 223–228.

    CAS  PubMed  Google Scholar 

  30. Hill PA, Buttle DJ, Jones SJ et al. Inhibition of bone resorption by selective inactivators of cysteine proteinases. J Cell Biochem 1994; 56: 118–130.

    Article  CAS  Google Scholar 

  31. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD . How cells respond to interferons. Annu Rev Biochem 1998; 67: 227–264.

    Article  CAS  Google Scholar 

  32. Darnell Jr JE . STATs and gene regulation. Science 1997; 277: 1630–1635.

    Article  CAS  Google Scholar 

  33. Lemaire R, Huet G, Zerimech F et al. Selective induction of the secretion of cathepsins B and L by cytokines in synovial fibroblast-like cells. Br J Rheumatol 1997; 36: 735–743.

    Article  CAS  Google Scholar 

  34. Hu X, Herrero C, Li WP et al. Sensitization of IFN-gamma Jak-STAT signaling during macrophage activation. Nat Immunol 2002; 3: 859–866.

    Article  CAS  Google Scholar 

  35. Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  36. Boukamp P, Petrussevska RT, Breitkreutz D et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–771.

    Article  CAS  Google Scholar 

  37. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ‘Institut National de la Santé et de la Recherche Médicale’ (Inserm), the Commissariat à l'Energie Atomique (CEA), the ‘Association de Recherche sur la Polyarthrite Rhumatoïde’ (ARP), and by Abbott laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Chiocchia.

Additional information

Conflict of interest: No conflict of interest.

Supplementary Information accompanies the paper on Genes and Immunity's website (http://www.nature.com/gene).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devauchelle, V., Marion, S., Cagnard, N. et al. DNA microarray allows molecular profiling of rheumatoid arthritis and identification of pathophysiological targets. Genes Immun 5, 597–608 (2004). https://doi.org/10.1038/sj.gene.6364132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364132

Keywords

This article is cited by

Search

Quick links