Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetic regulation of host responses to Salmonella infection in mice

Abstract

Salmonella spp are Gram-negative bacteria capable of infecting a wide range of host species, including humans, domesticated and wild mammals, reptiles, birds and insects. The outcome of an encounter between Salmonella and its host is dependent upon multiple factors including the host genetic background. To facilitate the study of the genetic factors involved in resistance to this pathogen, mouse models of Salmonella infection have been developed and studied for years, allowing identification of several genes and pathways that may influence the disease outcome. In this review, we will cover some of the genes involved in mouse resistance to Salmonella that were identified through the study of congenic mouse strains, cloning of spontaneous mouse mutations, use of site-directed mutagenesis or quantitative trait loci analysis. In parallel, the relevant information pertaining to genes involved in resistance to Salmonella in humans will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B . Salmonella nomenclature J Clin Microbiol 2000 38: 2465–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Centers for Disease Control and Prevention. National Center for Infectious Diseases. Division of Bacterial and Mycotic Diseaseshttp://www.cdc.gov2001

  3. Guard-Petter J . The chicken, the egg and Salmonella enteritidis Environ Microbiol 2001 3: 421–430

    Article  CAS  PubMed  Google Scholar 

  4. Troutt HF, Osburn BI . Meat from dairy cows: possible microbiological hazards and risks Rev Sci Tech 1997 16: 405–414

    Article  CAS  PubMed  Google Scholar 

  5. Schott 2nd HC, Ewart SL, Walker RD et al. An outbreak of salmonellosis among horses at a veterinary teaching hospital J Am Vet Med Assoc 2001 218: 1152–1159 1100

    Article  PubMed  Google Scholar 

  6. Walker RL, Madigan JE, Hird DW, Case JT, Villanueva MR, Bogenrief DS . An outbreak of equine neonatal salmonellosis J Vet Diagn Invest 1991 3: 223–227

    Article  CAS  PubMed  Google Scholar 

  7. Greenwood CM, Fujiwara TM, Boothroyd LJ et al. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family Am J Hum Genet 2000 67: 405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellamy R, Beyers N, McAdam KP et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan Proc Natl Acad Sci USA 2000 97: 8005–8009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marquet S, Abel L, Hillaire D et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33 Nat Genet 1996 14: 181–184

    Article  CAS  PubMed  Google Scholar 

  10. Pavia AT, Shipman LD, Wells JG et al. Epidemiologic evidence that prior antimicrobial exposure decreases resistance to infection by antimicrobial-sensitive Salmonella J Infect Dis 1990 161: 255–260

    Article  CAS  PubMed  Google Scholar 

  11. Giannella RA, Broitman SA, Zamcheck N . Influence of gastric acidity on bacterial and parasitic enteric infections. A perspective Ann Intern Med 1973 78: 271–276

    Article  CAS  PubMed  Google Scholar 

  12. Wong WY . Prevention and management of infection in children with sickle cell anaemia Paediatr Drugs 2001 3: 793–801

    Article  CAS  PubMed  Google Scholar 

  13. Mouy R, Fischer A, Vilmer E, Seger R, Griscelli C . Incidence, severity, and prevention of infections in chronic granulomatous disease J Pediatr 1989 114: 555–560

    Article  CAS  PubMed  Google Scholar 

  14. Jouanguy E, Doffinger R, Dupuis S, Pallier A, Altare F, Casanova JL . IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men Curr Opin Immunol 1999 11: 346–351

    Article  CAS  PubMed  Google Scholar 

  15. Dorman SE, Holland SM . Interferon-gamma and interleukin-12 pathway defects and human disease Cytokine Growth Factor Rev 2000 11: 321–333

    Article  CAS  PubMed  Google Scholar 

  16. Sperber SJ, Schleupner CJ . Salmonellosis during infection with human immunodeficiency virus Rev Infect Dis 1987 9: 925–934

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez Guerrero ML, Ramos JM, Nunez A, de Gorgolas M . Focal infections due to non-typhi Salmonella in patients with AIDS: report of 10 cases and review Clin Infect Dis 1997 25: 690–697

    Article  CAS  PubMed  Google Scholar 

  18. Aragon A, Duran Perez-Navarro A . Familial Salmonella-triggered reactive arthritis Br J Rheumatol 1996 35: 908–909

    Article  CAS  PubMed  Google Scholar 

  19. Caron J, Loredo-Osti JC, Laroche L, Skamene E, Morgane K, Malo D . Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection: an unexpected role of Nramp 1 (Slc11a1) in the persistence of infection in mice Genes Immun 2002 3: 196–204

    Article  CAS  PubMed  Google Scholar 

  20. Sebastiani G, Olien L, Gauthier S et al. Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice Genomics 1998 47: 180–186

    Article  CAS  PubMed  Google Scholar 

  21. Mastroeni P, Harrison JA, Hormaeche CE . Natural resistance and acquired immunity to Salmonella Fundam Clin Immunol 1994 2: 83–95

    Google Scholar 

  22. Richter-Dahlfors A, Buchan AM, Finlay BB . Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo J Exp Med 1997 186: 569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salcedo SP, Noursadeghi M, Cohen J, Holden DW . Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo Cell Microbiol 2001 3: 587–597

    Article  CAS  PubMed  Google Scholar 

  24. O'Brien AD, Scher I, Formal SB . Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection Infect Immun 1979 25: 513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hormaeche CE, Harrington KA . Natural resistance to Salmonellae in mice: control by genes within the major histocompatibility complex J Infect Dis 1985 152: 1050–1056

    Article  CAS  PubMed  Google Scholar 

  26. Nauciel C . Role of CD4+ T cells and T-independant mechanisms in acquired resistance to Salmonella typhimurium infection J Immunol 1990 145: 1265–1269

    CAS  PubMed  Google Scholar 

  27. O'Brien AD, Metcalf ES . Control of early Salmonella typhimurium growth in innately Salmonella-resistant mice does not require functional T lymphocytes J Immunol 1982 129: 1349–1351

    CAS  PubMed  Google Scholar 

  28. O'Brien AD, Scher I, Campbell GH, MacDermott RP, Formal SB . Susceptibility of CBA/N mice to infection with Salmonella typhimurium: influence of the x-linked gene controlling B lymphocyte function J Immunol 1979 123: 720–724

    CAS  PubMed  Google Scholar 

  29. Plant J, Glynn AA . Genetics of resistance to infection with Salmonella typhimurium in mice J Infect Dis 1976 133: 72–78

    Article  CAS  PubMed  Google Scholar 

  30. Robson HG, Vas SI . Resistance of inbred mice to Salmonella typhimurium J Infect Dis 1972 126: 378–386

    Article  CAS  PubMed  Google Scholar 

  31. Allcock RJN, Martin AM, Price P . The mouse as a model for the effects of MHC genes on human disease Immunol Today 2000 7: 328–332

    Article  Google Scholar 

  32. Nauciel C, Ronco E, Pla M . Influence of different regions of the H-2 complex on the rate of clearance of Salmonella typhimurium Infect Immun 1990 58: 573–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hess J, Ladel C, Miko D, Kaufmann SHE . Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice J Immunol 1996 156: 3321–3326

    CAS  PubMed  Google Scholar 

  34. Chapes SK, Beharka AA . Salmonella infections in the absence of the major histocompatibility complex II J Leukoc Biol 1998 63: 297–304

    Article  CAS  PubMed  Google Scholar 

  35. Nauciel C, Ronco E, Guenet JL, Pla M . Role of H-2 and non-H-2 genes in control of bacterial clearance from the spleen in Salmonella typhimurium-infected mice Infect Immun 1988 56: 2407–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lo WF, Ong H, Metcalf ES, Soloski MJ . T cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules J Immunol 1999 162: 5398–5406

    CAS  PubMed  Google Scholar 

  37. Dunstan SJ, Stephens HA, Blackwell JM et al. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam J Infect Dis 2001 183: 261–268

    Article  CAS  PubMed  Google Scholar 

  38. Dulphy N, Peyrat MA, Tieng V et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity toward HLA-B27 J Immunol 1999 162: 3830–3839

    CAS  PubMed  Google Scholar 

  39. Lo WF, Woods AS, DeCloux A, Cotter RJ, Metcalf ES, Soloski MJ . Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens Nat Med 2000 6: 215–218

    Article  CAS  PubMed  Google Scholar 

  40. Plant J, Glynn AA . Locating salmonella resistance gene on mouse chromosome 1 Clin Exp Immunol 1979 37: 1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bradley DJ . Letter: genetic control of natural resistance to Leishmania donovani Nature 1974 250: 353–354

    Article  CAS  PubMed  Google Scholar 

  42. Forget A, Skamene E, Gros P, Miailhe AC, Turcotte R . Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG Infect Immun 1981 32: 42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plant JE, Blackwell JM, O'Brien AD, Bradley DJ, Glynn AA . Are the Lsh and Ity disease resistance genes at one locus on mouse chromosome 1? Nature 1982 297: 510–511

    Article  CAS  PubMed  Google Scholar 

  44. Skamene E, Gros P, Forget A, Kongshavn PA, St Charles C, Taylor BA . Genetic regulation of resistance to intracellular pathogens Nature 1982 297: 506–509

    Article  CAS  PubMed  Google Scholar 

  45. Vidal SM, Malo D, Vogan K, Skamene E, Gros P . Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg Cell 1993 73: 469–485

    Article  CAS  PubMed  Google Scholar 

  46. Vidal S, Tremblay ML, Govoni G et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene J Exp Med 1995 182: 655–666

    Article  CAS  PubMed  Google Scholar 

  47. Lissner CR, Swanson RN, O'Brian AD . Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro J Immunol 1983 131: 3006–3013

    CAS  PubMed  Google Scholar 

  48. Gros P, Skamene E, Forget A . Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG) J Immunol 1983 131: 1966–1972

    CAS  PubMed  Google Scholar 

  49. Gros P, Skamene E, Forget A . Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice J Immunol 1981 127: 2417–2421

    CAS  PubMed  Google Scholar 

  50. Gros P, Malo D . A reverse genetics approach to Bcg/Ity/Lsh gene cloning Res Immunol 1989 140: 774–777

    Article  CAS  PubMed  Google Scholar 

  51. Blackwell JM . The macrophage resistance gene Lsh/Ity/Bcg Res Immunol 1989 140: 767–769

    Article  CAS  PubMed  Google Scholar 

  52. Schurr E, Skamene E, Forget A, Gros P . Linkage analysis of the Bcg gene on mouse chromosome 1 J Immunol 1989 142: 4507–4513

    CAS  PubMed  Google Scholar 

  53. Malo D, Vidal S, Lieman JH, Ward DC, Gros P . Physical delineation of the minimal chromosomal segment encompassing the murine host resistance locus Bcg Genomics 1993 17: 667–675

    Article  CAS  PubMed  Google Scholar 

  54. Malo D, Vidal SM, Hu J, Skamene E, Gros P . High-resolution linkage map in the vicinity of the host resistance locus Bcg Genomics 1993 16: 655–663

    Article  CAS  PubMed  Google Scholar 

  55. Forbes JR, Gros P . Divalent-metal transport by NRAMP proteins at the interface of host–pathogen interactions Trends Microbiol 2001 9: 397–403

    Article  CAS  PubMed  Google Scholar 

  56. Malo D, Vogan K, Vidal S et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites Genomics 1994 23: 51–61

    Article  CAS  PubMed  Google Scholar 

  57. Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P . Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains J Immunol 1996 157: 3559–3568

    CAS  PubMed  Google Scholar 

  58. Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P . The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele Infect Immun 1996 64: 2923–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brumell JH, Perrin AJ, Goosney DL, Finlay BB . Microbial pathogenesis: new niches for salmonella Curr Biol 2002 12: R15-R17

    Article  Google Scholar 

  60. Gruenheid S, Pinner E, Desjardins M, Gros P . Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome J Exp Med 1997 185: 717–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cuellar-Mata P, Jabado N, Liu J et al. Nramp1 modifies the fusion of Salmonella typhimurium containing vacuoles with cellular endomembranes in macrophages J Biol Chem 2002 277: 2258–2265

    Article  CAS  PubMed  Google Scholar 

  62. Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P . Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane J Exp Med 2000 192: 1237–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cellier MF, Bergevin I, Boyer E, Richer E . Polyphyletic origins of bacterial Nramp transporters Trends Genet 2001 17: 365–370

    Article  CAS  PubMed  Google Scholar 

  64. Alcais A, Sanchez FO, Thuc NV et al. Granulomatous reaction to intradermal injection of lepromin (Mitsuda reaction) is linked to the human NRAMP1 gene in Vietnamese leprosy sibships J Infect Dis 2000 181: 302–308

    Article  CAS  PubMed  Google Scholar 

  65. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV . Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans N Engl J Med 1998 338: 640–644

    Article  CAS  PubMed  Google Scholar 

  66. Abel L, Sanchez FO, Oberti J et al. Susceptibility to leprosy is linked to the human NRAMP1 gene J Infect Dis 1998 177: 133–145

    Article  CAS  PubMed  Google Scholar 

  67. Dunstan SJ, Ho VA, Duc CM et al. Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1 J Infect Dis 2001 183: 1156–1160

    Article  CAS  PubMed  Google Scholar 

  68. Hu J, Bumstead N, Barrow P et al. Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC Genome Res 1997 7: 693–704

    Article  CAS  PubMed  Google Scholar 

  69. Bumstead N, Barrow PA . Genetics of resistance to Salmonella typhimurium in newly hatched chicks Br Poult Sci 1988 29: 521–529

    Article  CAS  PubMed  Google Scholar 

  70. Rietschel ET, Kirikae T, Schade FU et al. Bacterial endotoxin: molecular relationships of structure to activity and function FASEB J 1994 8: 217–225

    Article  CAS  PubMed  Google Scholar 

  71. Medzhitov R . Toll-like receptors and innate immunity Nat Rev Immunol 2001 1: 135–145

    Article  CAS  PubMed  Google Scholar 

  72. Sultzer BM . Genetic control of leucocyte responses to endotoxin Nature 1968 219: 1253–1254

    Article  CAS  PubMed  Google Scholar 

  73. Sultzer BM . Genetic factors in leucocyte responses to endotoxin: further studies in mice J Immunol 1969 103: 32–38

    CAS  PubMed  Google Scholar 

  74. O'Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB . Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene J Immunol 1980 124: 20–24

    CAS  PubMed  Google Scholar 

  75. McAdam KPWJ, Ryan JL . C57BL/10/CR mice: nonresponders to activation by the lipid A moiety of a bacterial lipopolysaccharide J Immunol 1978 120: 249–253

    CAS  PubMed  Google Scholar 

  76. Vogel SN, Hansen CT, Rosenstreich DL . Characterization of a congenitally LPS-resistant athymic mouse strain J Immunol 1979 122: 619–622

    CAS  PubMed  Google Scholar 

  77. Bihl F, Lariviere L, Qureshi ST, Flaherty L, Malo D . LPS-hyporesponsiveness of mnd mice is associated with a mutation in Toll-like receptor 4 Genes Immun 2001 2: 56–59

    Article  CAS  PubMed  Google Scholar 

  78. Coutinho A, Tommaso M . Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice Immunogenetics 1978 7: 17–24

    Article  CAS  PubMed  Google Scholar 

  79. Watson J, Riblet R . Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic respones to lipopolysaccharides J Exp Med 1974 140: 1147–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watson J, Riblet R, Taylor BA . The response of recombinant inbred strains of mice to bacterial lipopolysaccharides J Immunol 1977 118: 2088–2093

    CAS  PubMed  Google Scholar 

  81. Watson J, Kelly K, Largen M, Taylor BA . The genetic mapping of a defective LPS response gene in C3H/HeJ mice J Immunol 1978 120: 422–424

    CAS  PubMed  Google Scholar 

  82. Qureshi ST, Lariviere L, Sebastiani G et al. A high-resolution map in the chromosomal region surrounding the Lps locus Genomics 1996 31: 283–294

    Article  CAS  PubMed  Google Scholar 

  83. Poltorak A, Smirnova I, He X et al. Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region Blood Cells Mol Dis 1998 24: 340–355

    Article  CAS  PubMed  Google Scholar 

  84. Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4) J Exp Med 1999 189: 615–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene Science 1998 282: 2085–2088

    Article  CAS  PubMed  Google Scholar 

  86. Poltorak A, Smirnova I, Clisch R, Beutler B . Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice J Endotoxin Res 2000 6: 51–56

    Article  CAS  PubMed  Google Scholar 

  87. Hoshino K, Takeuchi O, Kawai T et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product J Immunol 1999 162: 3749–3752

    CAS  PubMed  Google Scholar 

  88. Aderem A, Ulevitch RJ . Toll-like receptors in the induction of the innate immune response Nature 2000 406: 782–787

    Article  CAS  PubMed  Google Scholar 

  89. Hoffmann JA, Reichhart JM . Drosophila innate immunity: an evolutionary perspective Nat Immunol 2002 3: 121–126

    Article  CAS  PubMed  Google Scholar 

  90. da Silva Correia J, Ulevitch RJ . MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor J Biol Chem 2002 277: 1845–1854

    Article  PubMed  CAS  Google Scholar 

  91. Lien E, Means TK, Heine H et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide J Clin Invest 2000 105: 497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B . Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation Proc Natl Acad Sci USA 2000 97: 2163–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Horng T, Barton GM, Medzhitov R . TIRAP: an adapter molecule in the Toll signaling pathway Nat Immunol 2001 2: 835–841

    Article  CAS  PubMed  Google Scholar 

  94. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction Nature 2001 413: 78–83

    Article  CAS  PubMed  Google Scholar 

  95. Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components Immunity 1999 11: 443–451

    Article  CAS  PubMed  Google Scholar 

  96. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity Nature 1997 388: 394–397

    Article  CAS  PubMed  Google Scholar 

  97. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R . Toll-like receptors control activation of adaptive immune responses Nat Immunol 2001 2: 947–950

    Article  CAS  PubMed  Google Scholar 

  98. Scher I . The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity Adv Immunol 1982 33: 1–71

    Article  CAS  PubMed  Google Scholar 

  99. Nahm MH, Paslay JW, Davie JM . Unbalanced X chromosome mosaicism in B cells of mice with X-linked immunodeficiency J Exp Med 1983 158: 920–931

    Article  CAS  PubMed  Google Scholar 

  100. O’Brien AD, Scher I, Metcalf ES . Genetically conferred defect in anti-Salmonella antibody formation renders CBA/N mice innately susceptible to Salmonella typhimurium infection J Immunol 1981 126: 1368–1372

    PubMed  Google Scholar 

  101. Thomas JD, Sideras P, Smith CI, Vorechovsky I, Chapman V, Paul WE . Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes Science 1993 261: 355–358

    Article  CAS  PubMed  Google Scholar 

  102. Ochs HD, Smith CI . X-linked agammaglobulinemia. A clinical and molecular analysis Medicine (Baltimore) 1996 75: 287–299

    Article  CAS  Google Scholar 

  103. Vetrie D, Vorechovsky I, Sideras P et al. The gene invoved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases Nature 1993 361: 226–232

    Article  CAS  PubMed  Google Scholar 

  104. Tsukada S, Saffran DC, Rawlings DJ et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia Cell 1993 72: 279–290

    Article  CAS  PubMed  Google Scholar 

  105. Rawlings DJ, Saffran DC, Tsukada S et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice Science 1993 261: 358–361

    Article  CAS  PubMed  Google Scholar 

  106. Rawlings DJ . Bruton's tyrosine kinase control a sustained calcium signal essential for B lineage development and function Clin Immunol 1999 91: 243–253

    Article  CAS  PubMed  Google Scholar 

  107. Chan VW, Mecklenbrauker I, Su I et al. The molecular mechanism of B cell activation by toll-like receptor protein RP-105 J Exp Med 1998 188: 93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang WC, Collette Y, Nunes JA, Olive D . Tec kinases: a family with multiple roles in immunity Immunity 2000 12: 373–382

    Article  CAS  PubMed  Google Scholar 

  109. Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ . Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex Immunity 2000 13: 243–253

    Article  CAS  PubMed  Google Scholar 

  110. Fruman DA, Satterthwaite AB, Witte ON . Xid-like phenotypes: a B cell signalosome takes shape Immunity 2000 13: 1–3

    Article  CAS  PubMed  Google Scholar 

  111. Kang SW, Wahl MI, Chu J et al. PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization EMBO J 2001 20: 5692–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baraldi E, Carugo KD, Hyvonen M et al. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate Struc Fold Des 1999 7: 449–460

    Article  CAS  Google Scholar 

  113. Petro JB, Rahman SM, Ballard DW, Khan WN . Bruton's tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement J Exp Med 2000 191: 1745–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH . Bruton's tyrosine kinase links the B cell receptor to nuclear factor kappaB activation J Exp Med 2000 191: 1735–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fenton MJ, Golenbock DT . LPS-binding proteins and receptors J Leukoc Biol 1998 64: 25–32

    Article  CAS  PubMed  Google Scholar 

  116. Jack RS, Fan X, Bernheiden M et al. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection Nature 1997 389: 742–745

    Article  CAS  PubMed  Google Scholar 

  117. Heinrich JM, Bernheiden M, Minigo G et al. The essential role of lipopolysaccharide-binding protein in protection of mice against a peritoneal Salmonella infection involves the rapid induction of an inflammatory response J Immunol 2001 167: 1624–1628

    Article  CAS  PubMed  Google Scholar 

  118. Haziot A, Ferrero E, Kontgen F et al. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice Immunity 1996 4: 407–414

    Article  CAS  PubMed  Google Scholar 

  119. Bernheiden M, Heinrich JM, Minigo G et al. LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection J Endotoxin Res 2001 7: 447–450

    Article  CAS  PubMed  Google Scholar 

  120. Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM . Induction of a novel mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-deficient and Toll-like receptor 4-deficient mice J Immunol 2001 166: 1075–1078

    Article  CAS  PubMed  Google Scholar 

  121. Vazquez-Torres A, Fang FC . Oxygen-dependent anti-Salmonella activity of macrophages Trends Microbiol 2001 9: 29–33

    Article  CAS  PubMed  Google Scholar 

  122. Nathan C, Shiloh MU . Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens Proc Natl Acad Sci USA 2000 97: 8841–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pollock JD, Williams DA, Gifford MA et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production Nat Genet 1995 9: 202–209

    Article  CAS  PubMed  Google Scholar 

  124. Mastroeni P, Vazquez-Torres A, Fang FC et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo J Exp Med 2000 192: 237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shiloh MU, MacMicking JD, Nicholson S et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase Immunity 1999 10: 29–38

    Article  CAS  PubMed  Google Scholar 

  126. MacMicking JD, Nathan C, Hom G et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase Cell 1995 81: 641–650

    Article  CAS  PubMed  Google Scholar 

  127. Umezawa K, Akaike T, Fujii S et al. Induction of nitric oxide synthesis and xanthine oxidase and their roles in the antimicrobial mechanism against Salmonella typhimurium infection in mice Infect Immun 1997 65: 2932–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA . A Salmonella virulence protein that inhibits cellular trafficking EMBO J 1999 18: 3924–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vazquez-Torres A, Xu Y, Jones-Carson J et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase Science 2000 287: 1655–1658

    Article  CAS  PubMed  Google Scholar 

  130. Gallois A, Klein JR, Allen LA, Jones BD, Nauseef WM . Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane J Immunol 2001 166: 5741–5748

    Article  CAS  PubMed  Google Scholar 

  131. Chakravortty D, Hansen-Wester I, Hensel M . Salmonella pathogenicity island 2 mediates protection of intracellular salmonella from reactive nitrogen intermediates J Exp Med 2002 195: 1155–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fiers W . Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level FEBS Lett 1991 285: 199–212

    Article  CAS  PubMed  Google Scholar 

  133. Everest P, Roberts M, Dougan G . Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor Infect Immun 1998 66: 3355–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vazquez-Torres A, Fantuzzi G, Edwards 3rd CK, Dinarello CA, Fang FC . Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages Proc Natl Acad Sci USA 2001 98: 2561–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bao S, Beagley KW, France MP, Shen J, Husband AJ . Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection Immunology 2000 99: 464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lengeling A, Pfeffer K, Balling R . The battle of two genomes: genetics of bacterial host/pathogen interactions in mice Mammalian Genome 2001 12: 261–271

    Article  CAS  PubMed  Google Scholar 

  137. Mastroeni P, Harrison JA, Robinson JH et al. Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation Infect Immun 1998 66: 4767–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lehmann J, Bellmann S, Werner C, Schroder R, Schutze N, Alber G . IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis J Immunol 2001 167: 5304–5315

    Article  CAS  PubMed  Google Scholar 

  139. Picard C, Fieschi C, Altare F et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds Am J Hum Genet 2002 70: 336–348

    Article  CAS  PubMed  Google Scholar 

  140. de Jong R, Altare F, Haagen IA et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients Science 1998 280: 1435–1438

    Article  CAS  PubMed  Google Scholar 

  141. Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency Science 1998 280: 1432–1435

    Article  CAS  PubMed  Google Scholar 

  142. Altare F, Lammas D, Revy P et al. Inherited interleukin 12 deficiency in a child with bacille Calmette–Guerin and Salmonella enteritidis disseminated infection J Clin Invest 1998 102: 2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jouanguy E, Lamhamedi-Cherradi S, Altare F et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette–Guerin infection and a sibling with clinical tuberculosis J Clin Invest 1997 100: 2658–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Newport MJ, Huxley CM, Huston S et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection N Engl J Med 1996 335: 1941–1949

    Article  CAS  PubMed  Google Scholar 

  145. Jouanguy E, Lamhamedi-Cherradi S, Lammas D et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection Nat Genet 1999 21: 370–378

    Article  CAS  PubMed  Google Scholar 

  146. Sebastiani G, Leveque G, Lariviere L et al. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice Genomics 2000 64: 230–240

    Article  CAS  PubMed  Google Scholar 

  147. Sebastiani G, Blais V, Sancho V et al. Host immune response to Salmonella enterica serovar Typhimurium infection in mice derived from wild strains Infect Immun 2002 70: 1997–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nathan C . Perspectives series: nitric oxide and nitric oxide synthases. Inducible nitric oxide synthase: what difference does it make? J Clin Invest 1997 100: 2417–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL . Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression J Immunol 2001 167: 1882–1885

    Article  CAS  PubMed  Google Scholar 

  150. Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 Nature 2001 410: 1099–1103

    Article  CAS  PubMed  Google Scholar 

  151. Wojciechowski W, DeSanctis J, Skamene E, Radzioch D . Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette–Guerin involves class II transactivator and depends on the Nramp1 gene J Immunol 1999 163: 2688–2696

    CAS  PubMed  Google Scholar 

  152. Blackwell JM, Black GF, Sharples C, Soo SS, Peacock CS, Miller N . Roles of Nramp1, HLA, and a gene(s) in allelic association with IL-4, in determining T helper subset differentiation Microbes Infect 1999 1: 95–102

    Article  CAS  PubMed  Google Scholar 

  153. Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P . Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice Proc Natl Acad Sci USA 2001 98: 10 793–10 798

    Article  Google Scholar 

  154. Fortin A, Belouchi A, Tam MF et al. Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8 Nat Genet 1997 17: 382–383

    Article  CAS  PubMed  Google Scholar 

  155. Foote SJ, Burt RA, Baldwin TM et al. Mouse loci for malaria-induced mortality and the control of parasitaemia Nat Genet 1997 17: 380–381

    Article  CAS  PubMed  Google Scholar 

  156. Roberts LJ, Baldwin TM, Speed TP, Handman E, Foote SJ . Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection Eur J Immunol 1999 29: 3047–3050

    Article  CAS  PubMed  Google Scholar 

  157. Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E . Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9 J Infect Dis 1999 180: 150–155

    Article  CAS  PubMed  Google Scholar 

  158. Kramnik I, Dietrich WF, Demant P, Bloom BR . Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis Proc Natl Acad Sci USA 2000 97: 8560–8565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Boyartchuk VL, Broman KW, Mosher RE, D’Orazio SE, Starnbach MN, Dietrich WF . Multigenic control of Listeria monocytogenes susceptibility in mice Nat Genet 2001 27: 259–260

    Article  CAS  PubMed  Google Scholar 

  160. Mitsos LM, Cardon LR, Fortin A et al. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice Genes Immun 2000 1: 467–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ellen Bushman and Silvia Vidal for a critical reading of the manuscript. Danielle Malo is an investigator of the Canadian Institutes for Health Research and an International Research Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Malo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, MF., Malo, D. Genetic regulation of host responses to Salmonella infection in mice. Genes Immun 3, 381–393 (2002). https://doi.org/10.1038/sj.gene.6363924

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363924

Keywords

This article is cited by

Search

Quick links