Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses

Abstract

C3H/He mice infected with Borrelia burgdorferi develop severe arthritis and are high antibody responders, while infected C57BL/6 and BALB/c mice develop mild arthritis and less robust humoral responses. Genetic analysis using composite interval mapping (CIM) on reciprocal backcross populations derived from C3H/HeN and C57BL/6N or C3H/HeJ and BALB/cAnN mice identified 12 new quantitative trait loci (QTL) linked to 10 murine Lyme disease phenotypes. These QTL reside on chromosomes 1, 2, 4, 6, 7, 9, 10, 12, 14, 15, 16, and 17. A reanalysis of an F2 intercross between C57BL/6N and C3H/HeN mice using CIM identified two new QTL on chromosomes 4 and 15 and confirmed the location of seven previously identified loci. Two or more experimental crosses independently verified six QTL controlling phenotypes after B. burgdorferi infection. Additionally, Bb2 on chromosome 5 was reproduced in four experimental populations and was linked to the candidate locus Cora1. Evidence of four distinct QTL residing within the 30-cM region of chromosome 5 encompassing the previously mapped Bb2 and Bb3 loci was shown by CIM. Interestingly, some alleles contributing to susceptibility to Lyme arthritis were derived from C57BL/6N and BALB/cAnN mice, showing that disease-resistant strains harbor susceptibility alleles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Orloski KA, Hayes EB, Campbell GL, Dennis DT Surveillance for Lyme disease—United States Mor Mortal Wkly Rep CDCSurveill Summ 2000 49 1–11

    CAS  Google Scholar 

  2. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP Lyme disease_a tick-borne spirochetosis? Science 1982 216 1317–1319

    Article  CAS  PubMed  Google Scholar 

  3. Nocton JJ, Steere AC Lyme disease Adv Intern Med 1995 40 69–117

    CAS  PubMed  Google Scholar 

  4. Simon MM, Schaible UE, Wallich R, Kramer MD A mouse model for Borrelia burgdorferi infection: approach to a vaccine against Lyme disease Immunol Today 1991 12 11–16

    Article  CAS  PubMed  Google Scholar 

  5. Golde WT, Kappel KJ, Dequesne G et al Tick transmission of Borrelia burgdorferi to inbred strains of mice induces an antibody response to P39 but not to outer surface protein A Infect Immun 1994 62 2625–2627

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Steere AC, Schoen RT, Taylor E The clinical evolution of Lyme arthritis Ann Intern Med 1987 107 725–731

    Article  CAS  PubMed  Google Scholar 

  7. Nocton JJ, Dressler F, Rutledge BJ et al Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis N Engl J Med 1994 330 229–234

    Article  CAS  PubMed  Google Scholar 

  8. Gross DM, Forsthuber T, Tary-Lehmann M et al Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis Science 1998 281 703–706

    Article  CAS  PubMed  Google Scholar 

  9. Hemmer B, Gran B, Zhao Y et al Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease Nat Med 1999 5 1375–1382

    Article  CAS  PubMed  Google Scholar 

  10. Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD Lyme borreliosis in selected strains and ages of laboratory mice J Infect Dis 1990 162 133–138

    Article  CAS  PubMed  Google Scholar 

  11. Weis JJ, McCracken BA, Ma Y et al Identification of quantitative trait loci governing arthritis severity and humoral responses in murine model of Lyme disease J Immunol 1999 162 948–956

    CAS  PubMed  Google Scholar 

  12. Wooten RM, Weis JJ Host-pathogen interactions promoting inflammatory Lyme arthritis: use of mouse models for dissection of disease processes Curr Opin Microb 2001 4 274–279

    Article  CAS  Google Scholar 

  13. Ma Y, Seiler KP, Eichwald EJ, Weis JH, Teuscher C, Weis JJ Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice Infect Immun 1998 66 161–168

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Armstrong AL, Barthold SW, Persing DH, Beck DS Carditis in Lyme disease susceptible and resistant strains of laboratory mice infected with Borrelia burgdorferi Am J Trop Med Hyg 1992 47 249–258

    Article  CAS  PubMed  Google Scholar 

  15. Schaible UE, Kramer MD, Wallich R, Tran T, Simon MM Experimental Borrelia burgdorferi infection in inbred mouse strains: antibody response and association of H-2 genes with resistance and susceptibility to development of arthritis Eur J Immunol 1991 21 2397–2405

    Article  CAS  PubMed  Google Scholar 

  16. Yang L, Ma Y, Schoenfeld R et al Evidence for B-lymphocyte mitogen activity in Borrelia burgdorferi-infected mice Infect Immun 1992 60 3033–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matyniak JE, Reiner SL T helper phenotype and genetic susceptibility in experimental Lyme disease J Exp Med 1995 181 1251–1254

    Article  CAS  PubMed  Google Scholar 

  18. Barthold SW, Sidman CL, Smith, AL Lyme borreliosis in genetically resistant and susceptible mice with severe combined immunodeficiency Am J Trop Med Hyg 1992 47 605–613

    Article  CAS  PubMed  Google Scholar 

  19. Brown CR, Reiner SL Genetic control of experimental Lyme arthritis in the absence of specific immunity Infect Immun 1999 67 1967–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng ZB Precision mapping of quantitative trait loci Genetics 1994 136 1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng ZB Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci Proc Natl Acad Sci USA 1993 90 10972–10976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teuscher C, Butterfield RJ, Ma RZ, Zachary JF, Doerge RW, Blankenhorn EP Sequence polymorphisms in the chemokines Scya1 (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/nonrelapsing experimental allergic encephalomyelitis J Immunol 1999 163 2262–2266

    CAS  PubMed  Google Scholar 

  23. Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, Teuscher C Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis Am J Pathol 2000 157 637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ewart SL, Kuperman D, Schadt E et al Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice Am J Respir Cell Mol Biol 2000 23 537–545

    Article  CAS  PubMed  Google Scholar 

  25. Nau GJ, Liaw L, Chupp GL, Berman JS, Hogan BL, Young RA Attenuated host resistance against Mycobacterium bovis BCG infection in mice lacking osteopontin Infect Immun 1999 67 4223–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashkar S, Weber GF, Panoutsakopoulou V et al Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity Science 2000 287 860–864

    Article  CAS  PubMed  Google Scholar 

  27. Kosarova M, Havelkova H, Krulova M, Demant P, Lipoldova M The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively Immunogenetics 1999 49 134–141

    Article  CAS  PubMed  Google Scholar 

  28. Brown JP, Zachary JF, Teuscher C, Weis JJ, Wooten RM Dual role of interleukin-10 in murine Lyme disease: regulation of arthritis severity and host defense Infect Immun 1999 67 5142–5150

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Potter MR, Noben-Trauth N, Weis JH, Teuscher C, Weis JJ Interleukin-4 (IL-4) and IL-13 signaling pathways do not regulate Borrelia burgdorferi-induced arthritis in mice: IgG1 is not required for host control of tissue spirochetes Infect Immun 2000 68 5603–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes J Exp Med 1994 180 1705–1713

    Article  CAS  PubMed  Google Scholar 

  31. Podolin PL, Denny P, Lord CJ et al Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1 J Immunol 1997 159 1835–1843

    CAS  PubMed  Google Scholar 

  32. Lyons PA, Hancock WW, Denny P et al The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular of Cd30, Tnfr2, and Cd137 Immunity 2000 13 107–115

    Article  CAS  PubMed  Google Scholar 

  33. Wakeland EK, Wandstrat AE, Liu K, Morel L Genetic dissection of systemic lupus erythematosus Curr Opin Immunol 1999 11 701–707

    Article  CAS  PubMed  Google Scholar 

  34. Butterfield RJ, Roper RJ, Rhein DM et al Sex specific QTL govern susceptibility to Theiler’s murine encephalomyelitis virus-induced demyelination (TMEVD) (submitted for publication)

  35. Encinas JA, Lees MB, Sobel RA et al Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice J Immunol 1996 157 2186–2192

    CAS  PubMed  Google Scholar 

  36. Butterfield RJ, Sudweeks JD, Blankenhorn EP et al New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice J Immunol 1998 161 1860–1867

    CAS  PubMed  Google Scholar 

  37. Blankenhorn EP, Butterfield RJ, Rigby R et al Genetic analysis of the influence of pertussis toxin on experimental allergic encephalomyelitis susceptibility: an environmental agent can override genetic checkpoints J Immunol 2000 164 3420–3425

    Article  CAS  PubMed  Google Scholar 

  38. Kono DH, Burlingame RW, Owens DG et al Lupus susceptibility loci in New Zealand mice Proc Natl Acad Sci USA 1994 91 10168–10172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK Polygenic control of susceptibility to murine systemic lupus erythematosus Immunity 1994 1 219–229

    Article  CAS  PubMed  Google Scholar 

  40. Vyse TJ, Morel L, Tanner FJ, Wakeland EK, Kotzin BL Backcross analysis of genes linked to autoantibody production in New Zealand White mice J Immunol 1996 157 2719–2727

    CAS  PubMed  Google Scholar 

  41. Vyse TJ, Rozzo SJ, Drake CG, Izui S, Kotzin BL Control of multiple autoantibodies linked with a lupus nephritis susceptibility locus in New Zealand black mice J Immunol 1997 158 5566–5574

    CAS  PubMed  Google Scholar 

  42. Vyse TJ, Kotzin BL Genetic susceptibility to systemic lupus erythematosus Annu Rev Immunol 1998 16 261–292

    Article  CAS  PubMed  Google Scholar 

  43. Festing MFW Inbred strain characteristics(http://www.informatics.jax.org/external/festing/search_form.cgi)

  44. Morrison TB, Ma Y, Weis JH, Weis JJ Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR J Clin Microbiol 1999 37 987–992

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sudweeks JD, Todd JA, Blankenhorn EP et al Locus controlling Bordetella pertussis-induced histamine sensitization (Bphs), an autoimmune disease-susceptibility gene, maps distal to T-cell receptor beta-chain gene on mouse chromosome 6 Proc Natl Acad Sci USA 1993 90 3700–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lander ES, Green P, Abrahamson J et al MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics 1987 1 174–181

    Article  CAS  PubMed  Google Scholar 

  47. Lincoln S, Daly M, Lander E Constructing Genetic Maps With MAPMAKER/EXP 3.0. Whitehead Institute Technical Report 3rd edition 1992

    Google Scholar 

  48. Basten CJ, Weir BS, Zeng ZB QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping Department of Statistics, North Carolina State University, Raleigh, NC 1997

    Google Scholar 

  49. Doerge RW, Zeng ZB, Weir BS Statistical issues in the search for genes affecting quantitative traits in experimental populations Stat Sci 1997 12 195–219

    Article  Google Scholar 

  50. Churchill GA, Doerge RW Empirical threshold values for quantitative trait mapping Genetics 1994 138 963–971

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Lei Liu and Keith Frazier of the Bioinformatics Unit of the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois at Urbana-Champaign for O2K computer resources, and also Mark Clement of Brigham Young University for computer support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Teuscher.

Additional information

This work was supported by NIH AR43521 (to JJW and CT). RWD was partially funded by USDA grant 98–35300–6173. RJR was partially supported by NIH Cell and Molecular Biology Training Grant T32-GM-07283. MRP was supported as a predoctoral trainee by NIH Genetics Training Grant T32-GM-07464. Core facilities at the University of Utah were supported by NIH P30-CA-42014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roper, R., Weis, J., McCracken, B. et al. Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2, 388–397 (2001). https://doi.org/10.1038/sj.gene.6363801

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363801

Keywords

This article is cited by

Search

Quick links