Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polygenic risk assessment reveals pleiotropy between sarcoidosis and inflammatory disorders in the context of genetic ancestry

Abstract

Sarcoidosis is a complex disease of unknown etiology characterized by the presence of granulomatous inflammation. Though various immune system pathways have been implicated in disease, the relationship between the genetic determinants of sarcoidosis and other inflammatory disorders has not been characterized. Herein, we examined the degree of genetic pleiotropy common to sarcoidosis and other inflammatory disorders to identify shared pathways and disease systems pertinent to sarcoidosis onset. To achieve this, we quantify the association of common variant polygenic risk scores from nine complex inflammatory disorders with sarcoidosis risk. Enrichment analyses of genes implicated in pleiotropic associations were further used to elucidate candidate pathways. In European-Americans, we identify significant pleiotropy between risk of sarcoidosis and risk of asthma (R2=2.03%; P=8.89 × 10−9), celiac disease (R2=2.03%; P=8.21 × 10−9), primary biliary cirrhosis (R2=2.43%; P=2.01 × 10−10) and rheumatoid arthritis (R2=4.32%; P=2.50 × 10−17). These associations validate in African Americans only after accounting for the proportion of genome-wide European ancestry, where we demonstrate similar effects of polygenic risk for African-Americans with the highest levels of European ancestry. Variants and genes implicated in European-American pleiotropic associations were enriched for pathways involving interleukin-12, interleukin-27 and cell adhesion molecules, corroborating the hypothesized immunopathogenesis of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362–9367.

    Article  CAS  Google Scholar 

  2. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 2011; 89: 607–618.

    Article  CAS  Google Scholar 

  3. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016; 48: 510–518.

    Article  CAS  Google Scholar 

  4. International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    Google Scholar 

  5. Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R et al. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 1998; 63: 1839–1851.

    Article  CAS  Google Scholar 

  6. Iannuzzi MC, Rybicki BA, Teirstein AS . Sarcoidosis. N Engl J Med 2007; 357: 2153–2165.

    Article  CAS  Google Scholar 

  7. Sverrild A, Backer V, Kyvik KO, Kaprio J, Milman N, Svendsen CB et al. Heredity in sarcoidosis: a registry-based twin study. Thorax 2008; 63: 894–896.

    Article  CAS  Google Scholar 

  8. James DG . Descriptive definition and historic aspects of sarcoidosis. Clin Chest Med 1997; 18: 663–679.

    Article  CAS  Google Scholar 

  9. Rybicki BA, Major M, Popovich J Jr, Maliarik MJ, Iannuzzi MC . Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 1997; 145: 234–241.

    Article  CAS  Google Scholar 

  10. Edmondstone WM, Wilson AG . Sarcoidosis in Caucasians, Blacks and Asians in London. Br J Dis Chest 1985; 79: 27–36.

    Article  CAS  Google Scholar 

  11. Rybicki BA, Hirst K, Iyengar SK, Barnard JG, Judson MA, Rose CS et al. A sarcoidosis genetic linkage consortium: the sarcoidosis genetic analysis (SAGA) study. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22: 115–122.

    PubMed  Google Scholar 

  12. Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R et al. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS ONE 2012; 7: e43907.

    Article  CAS  Google Scholar 

  13. Fischer A, Ellinghaus D, Nutsua M, Hofmann S, Montgomery CG, Iannuzzi MC et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am J Respir Crit Care Med 2015; 192: 727–736.

    Article  CAS  Google Scholar 

  14. Levin AM, Iannuzzi MC, Montgomery CG, Trudeau S, Datta I, Adrianto I et al. Admixture fine-mapping in African Americans implicates XAF1 as a possible sarcoidosis risk gene. PloS ONE 2014; 9: e92646.

    Article  Google Scholar 

  15. Rivera NV, Ronninger M, Shchetynsky K, Franke A, Nothen MM, Muller-Quernheim J et al. High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am J Respir Crit Care Med 2016; 193: 1008–1022.

    Article  CAS  Google Scholar 

  16. Lareau CA, Adrianto I, Levin AM, Iannuzzi MC, Rybicki BA, Montgomery CG . Fine mapping of chromosome 15q25 implicates ZNF592 in neurosarcoidosis patients. Ann Clin Transl Neurol 2015; 2: 972–977.

    Article  CAS  Google Scholar 

  17. Darlington P, Tallstedt L, Padyukov L, Kockum I, Cederlund K, Eklund A et al. HLA-DRB1* alleles and symptoms associated with Heerfordt's syndrome in sarcoidosis. Eur Respir J 2011; 38: 1151–1157.

    Article  CAS  Google Scholar 

  18. Bello GA, Adrianto I, Dumancas GG, Levin AM, Iannuzzi MC, Rybicki BA et al. Role of NOD2 pathway genes in sarcoidosis cases with clinical characteristics of Blau syndrome. Am J Respir Crit Care Med 2015; 192: 1133–1135.

    Article  CAS  Google Scholar 

  19. Thompson IA, Liu B, Sen HN, Jiao X, Katamay R, Li Z et al. Association of complement factor H tyrosine 402 histidine genotype with posterior involvement in sarcoid-related uveitis. Am J Ophthalmol 2013; 155: 1068–1074 e1.

    Article  CAS  Google Scholar 

  20. Gialafos E, Triposkiadis F, Kouranos V, Rapti A, Kosmas I, Manali E et al. Relationship between tumor necrosis factor-alpha (TNFA) gene polymorphisms and cardiac sarcoidosis. In Vivo 2014; 28: 1125–1129.

    CAS  PubMed  Google Scholar 

  21. Euesden J, Lewis CM, O'Reilly PF . PRSice: Polygenic Risk Score software. Bioinformatics 2015; 31: 1466–1468.

    Article  CAS  Google Scholar 

  22. Power RA, Steinberg S, Bjornsdottir G, Rietveld CA, Abdellaoui A, Nivard MM et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat Neurosci 2015; 18: 953–955.

    Article  CAS  Google Scholar 

  23. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  Google Scholar 

  24. Rajoriya N, Wotton CJ, Yeates DG, Travis SP, Goldacre MJ . Immune-mediated and chronic inflammatory disease in people with sarcoidosis: disease associations in a large UK database. Postgrad Med J 2009; 85: 233–237.

    Article  CAS  Google Scholar 

  25. Chung D, Yang C, Li C, Gelernter J, Zhao H . GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet 2014; 10: e1004787.

    Article  Google Scholar 

  26. Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005; 33 (Web Server issue): W741–W748.

    Article  CAS  Google Scholar 

  27. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R . ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 2011; 39 (Database issue): D712–D717.

    Article  CAS  Google Scholar 

  28. Moller DR, Forman JD, Liu MC, Noble PW, Greenlee BM, Vyas P et al. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J Immunol 1996; 156: 4952–4960.

    CAS  PubMed  Google Scholar 

  29. Larousserie F, Pflanz S, Coulomb-L'Hermine A, Brousse N, Kastelein R, Devergne O . Expression of IL-27 in human Th1-associated granulomatous diseases. J Pathol 2004; 202: 164–171.

    Article  CAS  Google Scholar 

  30. Katchar K, Soderstrom K, Wahlstrom J, Eklund A, Grunewald J . Characterisation of natural killer cells and CD56+ T-cells in sarcoidosis patients. Eur Respir J 2005; 26: 77–85.

    Article  CAS  Google Scholar 

  31. Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73: 720–735.

    Article  CAS  Google Scholar 

  32. Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 2008; 40: 1103–1106.

    Article  CAS  Google Scholar 

  33. Oh SS, Galanter J, Thakur N, Pino-Yanes M, Barcelo NE, White MJ et al. Diversity in clinical and biomedical research: a promise yet to be fulfilled. PLoS Med 2015; 12: e1001918.

    Article  Google Scholar 

  34. Hoffmann TJ, Kvale MN, Hesselson SE, Zhan Y, Aquino C, Cao Y et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics 2011; 98: 79–89.

    Article  CAS  Google Scholar 

  35. Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet 2015; 97: 576–592.

    Article  CAS  Google Scholar 

  36. Dudbridge F . Power and predictive accuracy of polygenic risk scores. PLoS Genet 2013; 9: e1003348.

    Article  CAS  Google Scholar 

  37. James DG, Sharma OP . Overlap syndromes with sarcoidosis. Postgrad Med J 1985; 61: 769–771.

    Article  CAS  Google Scholar 

  38. Lowe G, Johnston RN . Sarcoidosis and coeliac disease. Lancet 1984; 2: 637.

    Article  CAS  Google Scholar 

  39. Naseer T, Minshall EM, Leung DY, Laberge S, Ernst P, Martin RJ et al. Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 1997; 155: 845–851.

    Article  CAS  Google Scholar 

  40. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet 2011; 43: 887–892.

    Article  CAS  Google Scholar 

  41. Hoggart CJ, Shriver MD, Kittles RA, Clayton DG, McKeigue PM . Design and analysis of admixture mapping studies. Am J Hum Genet 2004; 74: 965–978.

    Article  CAS  Google Scholar 

  42. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010; 42: 295–302.

    Article  CAS  Google Scholar 

  43. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47: 979–986.

    Article  CAS  Google Scholar 

  44. International Multiple Sclerosis Genetics C, Bush WS, Sawcer SJ, de Jager PL, Oksenberg JR, McCauley JL et al. Evidence for polygenic susceptibility to multiple sclerosis—the shape of things to come. Am J Hum Genet 2010; 86: 621–625.

    Article  Google Scholar 

  45. Cordell HJ, Han Y, Mells GF, Li Y, Hirschfield GM, Greene CS et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun 2015; 6: 8019.

    Article  CAS  Google Scholar 

  46. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010; 42: 508–514.

    Article  CAS  Google Scholar 

  47. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 2015; 47: 1457–1464.

    Article  CAS  Google Scholar 

  48. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41: 703–707.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the OMRF Genomics core for performing the genotyping experiments and the useful discussion. We are also grateful to the EVE asthma analysis consortium (RC2 HL101651) and particularly the efforts of Drs Carole Ober, Dan Nicolae and Dara Torgerson to make the asthma summary statistics available to the broader scientific community. Research reported in this publication was supported by the National Institute of General Medical Sciences (NIGMS), Heart, Lung and Blood Institute (NHLBI), and National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health under award numbers: P20GM103456 and P30GM110766 to IA, R01-HL54306 and U01-HL060263 to MCI, R56-AI072727 and R01-HL092576 to BAR, and P30 GM110766-01, RC2HL101499 and R01HL113326 to CGM. CAL is supported by an NSF Graduate Research Fellowship # DGE1144152. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions

Conceived and designed the study: CAL, CFD, MCI, BAR, AML and CGM. Analyzed data: CAL, CFD, IA and AML. Interpreted the data, drafted/revised the manuscript: CAL, CFD, IA, CJL, PMG, MCI, BAR, AML and CGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C G Montgomery.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lareau, C., DeWeese, C., Adrianto, I. et al. Polygenic risk assessment reveals pleiotropy between sarcoidosis and inflammatory disorders in the context of genetic ancestry. Genes Immun 18, 88–94 (2017). https://doi.org/10.1038/gene.2017.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2017.3

This article is cited by

Search

Quick links