Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The CLRX.1/NOD24 (NLRP2P) pseudogene codes a functional negative regulator of NF-κB, pyrin-only protein 4

Abstract

Pseudogenes are duplicated yet defunct copies of functional parent genes. However, some pseudogenes have gained or retained function. In this study, we consider a functional role for the NLRP2-related, higher primate-specific, processed pseudogene NLRP2P, which is closely related to Pyrin-only protein 2 (POP2/PYDC2), a regulator of nuclear factor-κB (NF-κB) and the inflammasome. The NLRP2P open-reading frame on chromosome X has features consistent with a processed pseudogene (retrotransposon), yet encodes a 45-amino-acid, Pyrin-domain-related protein. The open-reading frame of NLRP2P shares 80% identity with POP2 and is under purifying selection across Old World primates. Although widely expressed, NLRP2P messenger RNA is upregulated by lipopolysaccharide in human monocytic cells. Functionally, NLRP2P impairs NF-κB p65 transactivation by reducing activating phosphorylation of RelA/p65. Reminiscent of POP2, NLRP2P reduces production of the NF-κB-dependent cytokines tumor necrosis factor alpha and interleukin (IL)-6 following toll-like receptor stimulation. In contrast to POP2, NLRP2P fails to inhibit the ASC-dependent NLRP3 inflammasome. In addition, beyond regulating cytokine production, NLRP2P has a potential role in cell cycle regulation and cell death. Collectively, our findings suggest that NLRP2P is a resurrected processed pseudogene that regulates NF-κB RelA/p65 activity and thus represents the newest member of the POP family, POP4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Martinon F, Mayor A, Tschopp J . The inflammasomes: guardians of the body. Annu Rev Immunol 2009; 27: 229–265.

    Article  CAS  Google Scholar 

  2. Meylan E, Tschopp J, Karin M . Intracellular pattern recognition receptors in the host response. Nature 2006; 442: 39–44.

    Article  CAS  Google Scholar 

  3. Ghosh S, Hayden MS . New regulators of NF-[kappa]B in inflammation. Nat Rev Immunol 2008; 8: 837–848.

    Article  CAS  Google Scholar 

  4. Huang B, Yang X-D, Lamb A, Chen L-F . Posttranslational modifications of NF-[kappa]B: Another layer of regulation for NF-[kappa]B signaling pathway. Cell Signal 2010; 22: 1282–1290.

    Article  CAS  Google Scholar 

  5. Hayden MS, Ghosh S . NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26: 203–234.

    Article  CAS  Google Scholar 

  6. Saleh M . The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 2011; 243: 235–246.

    Article  CAS  Google Scholar 

  7. Harton JA, Linhoff MW, Zhang J, Ting JPY . Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol 2002; 169: 4088–4093.

    Article  CAS  Google Scholar 

  8. Martinon F, Burns K, Tschopp J . The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417–426.

    Article  CAS  Google Scholar 

  9. Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S, Dong J et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479: 117–121.

    Article  CAS  Google Scholar 

  10. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 2009; 30: 875–887.

    Article  CAS  Google Scholar 

  11. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J . NALP3 forms an IL-1[beta]-processing inflammasome with increased activity in muckle-wells autoinflammatory disorder. Immunity 2004; 20: 319–325.

    Article  CAS  Google Scholar 

  12. Mitroulis I, Skendros P, Ritis K . Targeting IL-1[beta] in disease; the expanding role of NLRP3 inflammasome. Eur J Int Med 2010; 21: 157–163.

    Article  CAS  Google Scholar 

  13. Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 2010; 185: 1711–1719.

    Article  CAS  Google Scholar 

  14. Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 2010; 185: 974–981.

    Article  CAS  Google Scholar 

  15. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 2009; 30: 576–587.

    Article  CAS  Google Scholar 

  16. Nakae S, Asano M, Horai R, Sakaguchi N, Iwakura Y . IL-1 enhances T cell-dependent antibody production through induction of CD40 ligand and OX40 on T cells. J Immunol 2001; 167: 90–97.

    Article  CAS  Google Scholar 

  17. Nakae S, Asano M, Horai R, Iwakura Y . Interleukin-1β, but not interleukin-1α, is required for T-cell-dependent antibody production. Immunology 2001; 104: 402–409.

    Article  CAS  Google Scholar 

  18. Bedoya F, Sandler LL, Harton JA . Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol 2007; 178: 3837–3845.

    Article  CAS  Google Scholar 

  19. Atianand MK, Fuchs T, Harton JA . Recent evolution of the NF-kappaB and inflammasome regulating protein POP2 in primates. BMC Evol Biol 2011; 11: 56.

    Article  CAS  Google Scholar 

  20. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV et al. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 2014; 15: 343–353.

    Article  CAS  Google Scholar 

  21. Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC . The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J 2003; 373: 101–113.

    Article  CAS  Google Scholar 

  22. Atianand MK, Harton JA . Uncoupling of Pyrin-only protein 2 (POP2) mediated dual-regulation of NF-κB and the inflammasome. J Biol Chem 2011; 286: 40536–40547.

    Article  CAS  Google Scholar 

  23. Dorfleutner A, Talbott SJ, Bryan NB, Funya KN, Rellick SL, Reed JC et al. A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 2007; 35: 685–694.

    Article  CAS  Google Scholar 

  24. Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricuttio D, Wang G et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 2005; 23: 587–598.

    Article  CAS  Google Scholar 

  25. Rahman MM, McFadden G . Myxoma virus lacking the pyrin-like protein M013 Is sensed in human myeloid cells by both NLRP3 and multiple toll-like receptors, which independently activate the inflammasome and NF-κB Innate response pathways. J Virol 2011; 85: 12505–12517.

    Article  CAS  Google Scholar 

  26. Rahman MM, Mohamed MR, Kim M, Smallwood S, McFadden G . Co-regulation of NF-kappaB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013. PLoS Pathog 2009; 5: e1000635.

    Article  Google Scholar 

  27. Khurana E, Lam HY, Cheng C, Carriero N, Cayting P, Gerstein MB . Segmental duplications in the human genome reveal details of pseudogene formation. Nucleic Acids Res 2010; 38: 6997–7007.

    Article  CAS  Google Scholar 

  28. Sen K, Podder S, Ghosh TC . Insights into the genomic features and evolutionary impact of the genes configuring duplicated pseudogenes in human. Febs Lett 2010; 584: 4015–4018.

    Article  CAS  Google Scholar 

  29. D'Errico I, Gadaleta G, Saccone C . Pseudogenes in metazoa: origin and features. Brief Funct Genomic Proteomic 2004; 3: 157–167.

    Article  CAS  Google Scholar 

  30. Vargas-Madrazo E, Almagro JC, Lara-Ochoa F . Structural repertoire in VHpseudogenes of immunoglobulins: comparison with human germline genes and human amino acid sequences. J Mol Biol 1995; 246: 74–81.

    Article  CAS  Google Scholar 

  31. Korneev SA, Park J-H, O’Shea M . Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 1999; 19: 7711–7720.

    Article  CAS  Google Scholar 

  32. Ioffe YJ, Chiappinelli KB, Mutch DG, Zighelboim I, Goodfellow PJ . Phosphatase and tensin homolog (PTEN) pseudogene expression in endometrial cancer: a conserved regulatory mechanism important in tumorigenesis? Gynecol Oncol 2011; 124: 340–346.

    Article  Google Scholar 

  33. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  Google Scholar 

  34. Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Veron G, Mulot B et al. From the Cover: Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc Natl Acad Sci USA 2012; 109: E432–E441.

    Article  CAS  Google Scholar 

  35. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514–518.

    Article  CAS  Google Scholar 

  36. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES . The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 2002; 277: 21119–21122.

    Article  CAS  Google Scholar 

  37. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC . Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol 2003; 171: 6154–6163.

    Article  CAS  Google Scholar 

  38. Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, Schmitz ML . The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem 2000; 267: 3828–3835.

    Article  CAS  Google Scholar 

  39. Reuther-Madrid JY, Kashatus D, Chen S, Li X, Westwick J, Davis RJ et al. The p65/RelA subunit of NF-kappaB suppresses the sustained, antiapoptotic activity of Jun kinase induced by tumor necrosis factor. Mol Cell Biol 2002; 22: 8175–8183.

    Article  CAS  Google Scholar 

  40. Carswell E, Old L, Kassel R, Green S, Fiore N, Williamson B . An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–3670.

    Article  CAS  Google Scholar 

  41. Miura M, Friedlander RM, Yuan J . Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc Natl Acad Sci USA 1995; 92: 8318–8322.

    Article  CAS  Google Scholar 

  42. Schilling D, Thomas K, Nixdorff K, Vogel SN, Fenton MJ . Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J Immunol 2002; 169: 5874–5880.

    Article  CAS  Google Scholar 

  43. Mariathasan S, Weiss DS, Dixit VM, Monack DM . Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 2005; 202: 1043–1049.

    Article  CAS  Google Scholar 

  44. Jones CL, Weiss DS . TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS ONE 2011; 6: e20609.

    Article  CAS  Google Scholar 

  45. Sivak LE, Pont-Kingdon G, Le K, Mayr G, Tai K-F, Stevens BT et al. A novel intron element operates posttranscriptionally to regulate human N-myc expression. Mol Cell Biol 1999; 19: 155–163.

    Article  CAS  Google Scholar 

  46. Tieri P, Termanini A, Bellavista E, Salvioli S, Capri M, Franceschi C . Charting the NF-kappaB pathway interactome map. PLoS ONE 2012; 7: e32678.

    Article  CAS  Google Scholar 

  47. Kersse K, Verspurten J, Berghe TV, Vandenabeele P . The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 2011; 36: 541–552.

    Article  CAS  Google Scholar 

  48. Kersse K, Vanden Berghe T, Lamkanfi M, Vandenabeele P . A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans 2007; 35: 1508–1511.

    Article  CAS  Google Scholar 

  49. Porter KA, Kelley LN, George A, Harton JA, Duus KM . Class II transactivator (CIITA) enhances cytoplasmic processing of HIV-1 Pr55Gag. PLoS ONE 2010; 5: e11304.

    Article  Google Scholar 

  50. Liang H, Zhou W, Landweber LF . SWAKK: a web server for detecting positive selection in proteins using a sliding window substitution rate analysis. Nucl Acids Res 2006; 34: W382–W384.

    Article  CAS  Google Scholar 

  51. Muse SV, Gaut BS . A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 1994; 11: 715–724.

    CAS  PubMed  Google Scholar 

  52. Tamura K, Nei M . Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512–526.

    CAS  PubMed  Google Scholar 

  53. Kosakovsky Pond SL, Frost SD . Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005; 22: 1208–1222.

    Article  Google Scholar 

  54. Suzuki Y, Gojobori T . A method for detecting positive selection at single amino acid sites. Mol Biol Evol 1999; 16: 1315–1328.

    Article  CAS  Google Scholar 

  55. Pond SL, Frost SD, Muse SV . HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005; 21: 676–679.

    Article  CAS  Google Scholar 

  56. Tamura K, Dudley J, Nei M, Kumar S . MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24: 1596–1599.

    Article  CAS  Google Scholar 

  57. Wen X, Duus KM, Friedrich TD, de Noronha CM . The HIV1 protein Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor. J Biol Chem 2007; 282: 27046–27057.

    Article  CAS  Google Scholar 

  58. George TC, Fanning SL, Fitzgerald-Bocarsly P, Medeiros RB, Highfill S, Shimizu Y et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods 2006; 311: 117–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr James R Drake for critical review of this manuscript, Dr Carlos M de Noronha for reagents, Amithi Narendran for technical support and the AMC Immunology Core. This work was supported by National Research Service Award (1F32AI100473-01) to KAP and National Institutes of Health grant (R01AI072259) awarded to JAH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Harton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, K., Duffy, E., Nyland, P. et al. The CLRX.1/NOD24 (NLRP2P) pseudogene codes a functional negative regulator of NF-κB, pyrin-only protein 4. Genes Immun 15, 392–403 (2014). https://doi.org/10.1038/gene.2014.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.30

This article is cited by

Search

Quick links