Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Host genetics and immune control of HIV-1 infection: fine mapping for the extended human MHC region in an African cohort

Abstract

Multiple major histocompatibility complex (MHC) loci encoding human leukocyte antigens (HLA) have allelic variants unequivocally associated with differential immune control of HIV-1 infection. Fine mapping based on single nucleotide polymorphisms (SNPs) in the extended MHC (xMHC) region is expected to reveal causal or novel factors and to justify a search for functional mechanisms. We have tested the utility of a custom fine-mapping platform (the ImmunoChip) for 172 HIV-1 seroconverters (SCs) and 449 seroprevalent individuals (SPs) from Lusaka, Zambia, with a focus on more than 6400 informative xMHC SNPs. When conditioned on HLA and nongenetic factors previously associated with HIV-1 viral load (VL) in the study cohort, penalized approaches (HyperLasso models) identified an intergenic SNP (rs3094626 between RPP21 and HLA-E) and an intronic SNP (rs3134931 in NOTCH4) as novel correlates of early set-point VL in SCs. The minor allele of rs2857114 (downstream from HLA-DOB) was an unfavorable factor in SPs. Joint models based on demographic features, HLA alleles and the newly identified SNP variants could explain 29% and 15% of VL variance in SCs and SPs, respectively. These findings and bioinformatics strongly suggest that both classic and nonclassic MHC genes deserve further investigation, especially in Africans with relatively short haplotype blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Prentice HA, Tang J . HIV-1 dynamics: a reappraisal of host and viral factors, as well as methodological issues. Viruses 2012; 4: 2080–2096.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guergnon J, Theodorou I . What did we learn on host's genetics by studying large cohorts of HIV-1-infected patients in the genome-wide association era? Curr Opin HIV AIDS 2011; 6: 290–296.

    Article  PubMed  Google Scholar 

  3. Aouizerat BE, Pearce CL, Miaskowski C . The search for host genetic factors of HIV/AIDS pathogenesis in the post-genome era: progress to date and new avenues for discovery. Curr HIV/AIDS Rep 2011; 8: 38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317: 944–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dalmasso C, Carpentier W, Meyer L, Rouzioux C, Goujard C, Chaix ML et al. Distinct genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: the ANRS Genome Wide Association 01 study. PLoS ONE 2008; 3: e3907.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C, Delaneau O et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J Infect Dis 2009; 199: 419–426.

    Article  PubMed  Google Scholar 

  7. Le Clerc S, Limou S, Coulonges C, Carpentier W, Dina C, Taing L et al. Genomewide association study of a rapid progression cohort identifies new susceptibility alleles for AIDS (ANRS Genomewide Association Study 03). J Infect Dis 2009; 200: 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  8. Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet 2009; 5: e1000791.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Herbeck JT, Gottlieb GS, Winkler CA, Nelson GW, An P, Maust BS et al. Multistage genomewide association study identifies a locus at 1q41 associated with rate of HIV-1 disease progression to clinical AIDS. J Infect Dis 2010; 201: 618–626.

    Article  CAS  PubMed  Google Scholar 

  10. Pelak K, Goldstein DB, Walley NM, Fellay J, Ge D, Shianna KV et al. Host determinants of HIV-1 control in African Americans. J Infect Dis 2010; 201: 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  11. Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, Walker BD et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010; 330: 1551–1557.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M et al. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. Elife 2013; 2: e01123.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Catano G, Kulkarni H, He W, Marconi VC, Agan BK, Landrum M et al. HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS ONE 2008; 3: e3636.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shrestha S, Aissani B, Song W, Wilson CM, Kaslow RA, Tang J . Host genetics and HIV-1 viral load set-point in African-Americans. AIDS 2009; 23: 673–677.

    Article  PubMed  Google Scholar 

  15. Chapman SJ, Hill AV . Human genetic susceptibility to infectious disease. Nat Rev Genet 2012; 13: 175–188.

    Article  CAS  PubMed  Google Scholar 

  16. Donfack J, Buchinsky FJ, Post JC, Ehrlich GD . Human susceptibility to viral infection: the search for HIV-protective alleles among Africans by means of genome-wide studies. AIDS Res Hum Retroviruses 2006; 22: 925–930.

    Article  CAS  PubMed  Google Scholar 

  17. McLaren PJ, Ripke S, Pelak K, Weintrob AC, Patsopoulos NA, Jia X et al. Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans. Hum Mol Genet 2012; 21: 4334–4347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang J, Tang S, Lobashevsky E, Myracle AD, Fideli U, Aldrovandi G et al. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1. J Virol 2002; 76: 8276–8284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang J, Tang S, Lobashevsky E, Zulu I, Aldrovandi G, Allen S et al. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retroviruses 2004; 20: 19–25.

    Article  CAS  PubMed  Google Scholar 

  20. Lazaryan A, Lobashevsky E, Mulenga J, Karita E, Allen S, Tang J et al. Human leukocyte antigen B58 supertype and human immunodeficiency virus type 1 infection in native Africans. J Virol 2006; 80: 6056–6060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang J, Malhotra R, Song W, Brill I, Hu L, Farmer PK et al. Human leukocyte antigens and HIV type 1 viral load in early and chronic infection: predominance of evolving relationships. PLoS ONE 2010; 5: e9629.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yue L, Prentice HA, Farmer P, Song W, He D, Lakhi S et al. Cumulative impact of host and viral factors on HIV-1 viral-load control during early infection. J Virol 2012; 87: 708–715.

    Article  PubMed  Google Scholar 

  23. Tang J, Cormier E, Gilmour J, Price MA, Prentice HA, Song W et al. Human leukocyte antigen variants B*44 and B*57 are consistently favorable during two distinct phases of primary HIV-1 infection in sub-Saharan Africans with several viral subtypes. J Virol 2011; 85: 8894–8902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crawford H, Matthews PC, Schaefer M, Carlson JM, Leslie A, Kilembe W et al. The hypervariable HIV-1 capsid protein residues comprise HLA-driven CD8+ T-cell escape mutations and covarying HLA-independent polymorphisms. J Virol 2011; 85: 1384–1390.

    Article  CAS  PubMed  Google Scholar 

  25. Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, Dilthey A et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 2012; 44: 502–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hinks A, Barton A, Shephard N, Eyre S, Bowes J, Cargill M et al. Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis. Arthritis Rheum 2009; 60: 258–263.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal S . Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 2002; 296: 1439–1443.

    Article  CAS  PubMed  Google Scholar 

  28. Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, Addo M et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 2009; 458: 641–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prentice HA, Porter TR, Price MA, Cormier E, He D, Farmer PK et al. HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and steady wins the race? J Virol 2013; 87: 4043–4051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayers KL, Cordell HJ . SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genet Epidemiol 2010; 34: 879–891.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ . Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet 2008; 4: e1000130.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Via M, Gignoux C, Burchard EG . The 1000 Genomes Project: new opportunities for research and social challenges. Genome Med 2010; 2: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A et al. ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res 2010; 38 (Database issue): D620–D625.

    Article  CAS  PubMed  Google Scholar 

  34. ENCODE Project Consortium Bernstein BE, Birney E, Dunham I, Green ED, Gunter C et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  35. Le Clerc S, Coulonges C, Delaneau O, Van Manen D, Herbeck JT, Limou S et al. Screening low-frequency SNPS from genome-wide association study reveals a new risk allele for progression to AIDS. J Acquir Immune Defic Syndr 2011; 56: 279–284.

    Article  PubMed  PubMed Central  Google Scholar 

  36. He C, Hamon S, Li D, Barral-Rodriguez S, Ott J, Diabetes Genetics Consortium. MHC fine mapping of human type 1 diabetes using the T1DGC data. Diabetes Obes Metab 2009; 11 (Suppl 1): 53–59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Valdes AM, Thomson G, Type 1 Diabetes Genetics Consortium. Several loci in the HLA class III region are associated with T1D risk after adjusting for DRB1-DQB1. Diabetes Obes Metab 2009; 11 (Suppl 1): 46–52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morris DL, Taylor KE, Fernando MM, Nititham J, Alarcon-Riquelme ME, Barcellos LF et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 2012; 91: 778–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santin I, Castellanos-Rubio A, Aransay AM, Gutierrez G, Gaztambide S, Rica I et al. Exploring the diabetogenicity of the HLA-B18-DR3 CEH: independent association with T1D genetic risk close to HLA-DOA. Genes Immun 2009; 10: 596–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Souwer Y, Chamuleau ME, van de Loosdrecht AA, Tolosa E, Jorritsma T, Muris JJ et al. Detection of aberrant transcription of major histocompatibility complex class II antigen presentation genes in chronic lymphocytic leukaemia identifies HLA-DOA mRNA as a prognostic factor for survival. Br J Haematol 2009; 145: 334–343.

    Article  CAS  PubMed  Google Scholar 

  41. Xiu F, Côté MH, Bourgeois-Daigneault MC, Brunet A, Gauvreau MÉ, Shaw A et al. Cutting edge: HLA-DO impairs the incorporation of HLA-DM into exosomes. J Immunol 2011; 187: 1547–1551.

    Article  CAS  PubMed  Google Scholar 

  42. Dorak MT, Shao W, Machulla HK, Lobashevsky ES, Tang J, Park MH et al. Conserved extended haplotypes of the major histocompatibility complex: further characterization. Genes Immun 2006; 7: 450–467.

    Article  CAS  PubMed  Google Scholar 

  43. Polychronakos C . Fine points in mapping autoimmunity. Nat Genet 2011; 43: 1173–1174.

    Article  CAS  PubMed  Google Scholar 

  44. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011; 43: 1193–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nikula T, West A, Katajamaa M, Lönnberg T, Sara R, Aittokallio T et al. A human ImmunoChip cDNA microarray provides a comprehensive tool to study immune responses. J Immunol Methods 2005; 303: 122–134.

    Article  CAS  PubMed  Google Scholar 

  46. Cortes A, Brown MA . Promise and pitfalls of the Immunochip. Arthritis Res Ther 2011; 13: 101.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fideli US, Allen SA, Musonda R, Trask S, Hahn BH, Weiss H et al. Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 in Africa. AIDS Res Hum Retroviruses 2001; 17: 901–910.

    Article  PubMed  Google Scholar 

  48. Trask SA, Derdeyn CA, Fideli U, Chen Y, Meleth S, Kasolo F et al. Molecular epidemiology of human immunodeficiency virus type 1 transmission in a heterosexual cohort of discordant couples in Zambia. J Virol 2002; 76: 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kempf MC, Allen S, Zulu I, Kancheya N, Stephenson R, Brill I et al. Enrollment and retention of HIV discordant couples in Lusaka, Zambia. J Acquir Immune Defic Syndr 2008; 47: 116–125.

    Article  PubMed  Google Scholar 

  50. Browning BL, Yu Z . Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am J Hum Genet 2009; 85: 847–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; 38: 1166–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM . Robust relationship inference in genome-wide association studies. Bioinformatics 2010; 26: 2867–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manichaikul A, Palmas W, Rodriguez CJ, Peralta CA, Divers J, Guo X et al. Population structure of Hispanics in the United States: the multi-ethnic study of atherosclerosis. PLoS Genet 2012; 8: e1002640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu X, Li S, Cooper RS, Elston RC . A unified association analysis approach for family and unrelated samples correcting for stratification. Am J Hum Genet 2008; 82: 352–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. International HapMap 3 Consortium Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010; 467: 52–58.

    Article  Google Scholar 

  56. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  57. Vignal CM, Bansal AT, Balding DJ . Using penalised logistic regression to fine map HLA variants for rheumatoid arthritis. Ann Hum Genet 2011; 75: 655–664.

    Article  PubMed  Google Scholar 

  58. Gao X, Starmer J, Martin ER . A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 2008; 32: 361–369.

    Article  PubMed  Google Scholar 

  59. Gao X, Becker LC, Becker DM, Starmer JD, Province MA . Avoiding the high Bonferroni penalty in genome-wide association studies. Genet Epidemiol 2010; 34: 100–105.

    PubMed  PubMed Central  Google Scholar 

  60. Tang J, Shao W, Yoo YJ, Brill I, Mulenga J, Allen S et al. Human leukocyte antigen class I genotyes in relation to heterosexual HIV type 1 transmission within discordant couples. J Immunol 2008; 181: 2626–2635.

    Article  CAS  PubMed  Google Scholar 

  61. Ward LD, Kellis M . HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40 (Database issue): D930–D934.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by multiple grants, including R01 AI071906 (to RAK and JT) and R01 AI064060 (to EH) from the National Institute of Allergy and Infectious Diseases (NIAID). We are grateful to several associates, especially Ilene Brill, Paul Farmer, Travis Porter and Wei Song, for their contribution to data management and genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Tang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prentice, H., Pajewski, N., He, D. et al. Host genetics and immune control of HIV-1 infection: fine mapping for the extended human MHC region in an African cohort. Genes Immun 15, 275–281 (2014). https://doi.org/10.1038/gene.2014.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.16

This article is cited by

Search

Quick links