Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Disease-promoting and -protective genomic loci on mouse chromosomes 3 and 19 control the incidence and severity of autoimmune arthritis

Abstract

Proteoglycan (PG)-induced arthritis (PGIA) is a murine model of rheumatoid arthritis. Arthritis-prone BALB/c mice are 100% susceptible, whereas the major histocompatibility complex-matched DBA/2 strain is completely resistant to PGIA. To reduce the size of the disease-suppressive loci for sequencing and to find causative genes of arthritis, we created a set of BALB/c.DBA/2-congenic/subcongenic strains carrying DBA/2 genomic intervals overlapping the entire Pgia26 locus on chromosome 3 (chr3) and Pgia23/Pgia12 loci on chr19 in the arthritis-susceptible BALB/c background. Upon immunization of these subcongenic strains and their wild-type (BALB/c) littermates, we identified a major Pgia26a sublocus on chr3 that suppressed disease onset, incidence and severity via controlling the complex trait of T-cell responses. The region was reduced to 3 Mbp (11.8 Mbp with flanking regions) in size and contained gene(s) influencing the production of a number of proinflammatory cytokines. Additionally, two independent loci (Pgia26b and Pgia26c) suppressed the clinical scores of arthritis. The Pgia23 locus (3 Mbp in size) on chr19 reduced arthritis susceptibility and onset, and the Pgia12 locus (6 Mbp) associated with low arthritis severity. Thus, we have reached the critical sizes of arthritis-associated genomic loci on mouse chr3 and chr19, which are ready for high-throughput sequencing of genomic DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Choi S, Rho Y, Ji JD, Song GG, Lee Y . Genome scan meta-analysis of rheumatoid arthritis. Rheumatology (Oxford) 2006; 45: 166–170.

    Article  CAS  Google Scholar 

  2. Etzel CJ, Chen WV, Shepard N, Jawaheer D, Cornelis F, Seldin MF et al. Genome-wide meta-analysis for rheumatoid arthritis. Hum Genet 2006; 119: 634–641.

    Article  CAS  Google Scholar 

  3. Coenen MJ, Gregersen PK . Rheumatoid arthritis: a view of the current genetic landscape. Genes Immun 2009; 10: 101–111.

    Article  CAS  Google Scholar 

  4. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010; 42: 508–514.

    Article  CAS  Google Scholar 

  5. Cornelis F, Faure S, Martinez M, Prud'homme JF, Fritz P, Dib C et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10746–10750.

    Article  CAS  Google Scholar 

  6. Shiozawa S, Hayashi S, Tsukamoto Y, Goko H, Kawasaki H, Wada T et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int Immunol 1998; 10: 1891–1895.

    Article  CAS  Google Scholar 

  7. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Monteiro J et al. A genome-wide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet 2001; 68: 927–936.

    Article  CAS  Google Scholar 

  8. MacKay K, Eyre S, Myerscough A, Milicic A, Barton A, Laval S et al. Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum 2002; 46: 632–639.

    Article  CAS  Google Scholar 

  9. Hughes LB, Reynolds RJ, Brown EE, Kelley JM, Thomson B, Conn DL et al. Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans. Arthritis Rheum 2010; 62: 3547–3553.

    Article  Google Scholar 

  10. Freudenberg J, Lee HS, Han BG, Shin HD, Kang YM, Sung YK et al. Genome-wide association study of rheumatoid arthritis in Koreans: population-specific loci as well as overlap with European susceptibility loci. Arthritis Rheum 2011; 63: 884–893.

    Article  CAS  Google Scholar 

  11. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  Google Scholar 

  12. Yang H-T, Jirholt J, Svensson L, Sundvall M, Jansson L, Pettersson U et al. Identification of genes controlling collagen-induced arthritis in mice: striking homology with susceptibility loci previously identified in the rat. J Immunol 1999; 163: 2916–2921.

    CAS  PubMed  Google Scholar 

  13. Barton A, Eyre S, Myerscough A, Brintnell B, Ward D, Ollier WE et al. High resolution linkage and association mapping identifies a novel rheumatoid arthritis susceptibility locus homologous to one linked to two rat models of inflammatory arthritis. Hum Mol Genet 2001; 10: 1901–1906.

    Article  CAS  Google Scholar 

  14. Olofsson P, Lu S, Holmberg J, Song T, Wernhoff P, Pettersson U et al. A comparative genetic analysis between collagen-induced arthritis and pristane-induced arthritis. Arthritis Rheum 2003; 48: 2332–2342.

    Article  CAS  Google Scholar 

  15. Kurreeman FA, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, Stoeken-Rijsbergen G et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 2007; 4: e278.

    Article  Google Scholar 

  16. Glant TT, Finnegan A, Mikecz K . Proteoglycan-induced arthritis: immune regulation, cellular mechanisms and genetics. Crit Rev Immunol 2003; 23: 199–250.

    Article  CAS  Google Scholar 

  17. Glant TT, Mikecz K, Arzoumanian A, Poole AR . Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 1987; 30: 201–212.

    Article  CAS  Google Scholar 

  18. Mikecz K, Glant TT, Poole AR . Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum 1987; 30: 306–318.

    Article  CAS  Google Scholar 

  19. Glant TT, Radacs M, Nagyeri G, Olasz K, Laszlo A, Boldizsar F et al. Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two types of rheumatoid arthritis. Arthritis Rheum 2011; 63: 1312–1321.

    Article  CAS  Google Scholar 

  20. Adarichev VA, Bardos T, Christodoulou S, Phillips MT, Mikecz K, Glant TT . Major histocompatibility complex controls susceptibility and dominant inheritance, but not the severity of the disease in mouse models of rheumatoid arthritis. Immunogenetics 2002; 54: 184–192.

    Article  CAS  Google Scholar 

  21. Otto JM, Cs-Szabó G, Gallagher J, Velins S, Mikecz K, Buzas EI et al. Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis. Arthritis Rheum 1999; 42: 2524–2531.

    Article  CAS  Google Scholar 

  22. Otto JM, Chandrasekaran R, Vermes C, Mikecz K, Finnegan A, Rickert SE et al. A genome scan using a novel genetic cross identifies new susceptibility loci and traits in a mouse model of rheumatoid arthritis. J Immunol 2000; 165: 5278–5286.

    Article  CAS  Google Scholar 

  23. Adarichev VA, Valdez JC, Bardos T, Finnegan A, Mikecz K, Glant TT . Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J Immunol 2003; 170: 2283–2292.

    Article  CAS  Google Scholar 

  24. Glant TT, Adarichev VA, Nesterovitch AB, Szanto S, Oswald JP, Jacobs JJ et al. Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci 2004; 327: 188–195.

    Article  CAS  Google Scholar 

  25. Glant TT, Szanto S, Vegvari A, Szabo Z, Kis-Toth K, Mikecz K et al. Two loci on chromosome 15 control experimentally induced arthritis through the differential regulation of IL-6 and lymphocyte proliferation. J Immunol 2008; 181: 1307–1314.

    Article  CAS  Google Scholar 

  26. Adarichev VA, Vegvari A, Szabo Z, Kis-Toth K, Mikecz K, Glant TT . Congenic strains displaying similar clinical phenotype of arthritis represent different immunologic models of inflammation. Genes Immun 2008; 9: 591–601.

    Article  CAS  Google Scholar 

  27. Adarichev VA, Nesterovitch AB, Bardos T, Biesczat D, Chandrasekaran R, Vermes C et al. Sex effect on clinical and immunological quantitative trait loci in a murine model of rheumatoid arthritis. Arthritis Rheum 2003; 48: 1708–1720.

    Article  Google Scholar 

  28. Siminovitch KA . PTPN22 and autoimmune disease. Nature Genet 2004; 36: 1248–1249.

    Article  CAS  Google Scholar 

  29. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  Google Scholar 

  30. Carlton VE, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 2005; 77: 567–581.

    Article  CAS  Google Scholar 

  31. Viken MK, Amundsen SS, Kvien TK, Boberg KM, Gilboe IM, Lilleby V et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun 2005; 6: 271–273.

    Article  CAS  Google Scholar 

  32. Barton A, Thomson W, Ke X, Eyre S, Hinks A, Bowes J et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum Mol Genet 2008; 17: 2274–2279.

    Article  CAS  Google Scholar 

  33. Morgan AW, Robinson JI, Conaghan PG, Martin SG, Hensor EM, Morgan MD et al. Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort. Arthritis Res Ther 2010; 12: R57.

    Article  Google Scholar 

  34. Johannesson M, Karlsson J, Wernhoff P, Nandakumar KS, Lindqvist AK, Olsson L et al. Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice. Genes Immun 2005; 6: 175–185.

    Article  CAS  Google Scholar 

  35. Firneisz G, Zahevi I, Vermes C, Hanyecz A, Frieman JA, Glant TT . Identification and quantification of disease-related gene clusters. Bioinformatics 2003; 19: 1781–1786.

    Article  CAS  Google Scholar 

  36. Darvasi A . Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm Genome 1997; 8: 163–167.

    Article  CAS  Google Scholar 

  37. Darvasi A . Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 1998; 18: 19–24.

    Article  CAS  Google Scholar 

  38. Osorio Y, Fortea J, Bukulmez H, Petit-Teixeira E, Michou L, Pierlot C et al. Dense genome-wide linkage analysis of rheumatoid arthritis, including covariates. Arthritis Rheum 2004; 50: 2757–2765.

    Article  Google Scholar 

  39. Xue L, Morris SW, Orihuela C, Tuomanen E, Cui X, Wen R et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat Immunol 2003; 4: 857–865.

    Article  CAS  Google Scholar 

  40. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL et al. Vav3 regulates osteoclast function and bone mass. Nat Med 2005; 11: 284–290.

    Article  CAS  Google Scholar 

  41. Saito T, Seki N, Yamauchi M, Tsuji S, Hayashi A, Kozuma S et al. Structure, chromosomal location, and expression profile of EXTR1 and EXTR2, new members of the multiple exostoses gene family. Biochem Biophys Res Commun 1998; 243: 61–66.

    Article  CAS  Google Scholar 

  42. Thomsen B, Horn P, Panitz F, Bendixen E, Petersen AH, Holm LE et al. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res 2006; 16: 97–105.

    Article  CAS  Google Scholar 

  43. Glant TT, Bardos T, Vermes C, Chandrasekaran R, Valdéz JC, Otto JM et al. Variations in susceptibility to proteoglycan-induced arthritis and spondylitis among C3H substrains of mice. Evidence of genetically acquired resistance to autoimmune disease. Arthritis Rheum 2001; 44: 682–692.

    Article  CAS  Google Scholar 

  44. Carter RA, Wicks IP . Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum 2001; 44: 985–994.

    Article  CAS  Google Scholar 

  45. Navarro-Hernandez RE, Oregon-Romero E, Vazquez-Del Mercado M, Rangel-Villalobos H, Palafox-Sanchez CA, Munoz-Valle JF . Expression of ICAM1 and VCAM1 serum levels in rheumatoid arthritis clinical activity. Association with genetic polymorphisms. Dis Markers 2009; 26: 119–126.

    Article  CAS  Google Scholar 

  46. Luo SF, Fang RY, Hsieh HL, Chi PL, Lin CC, Hsiao LD et al. Involvement of MAPKs and NF-kappaB in tumor necrosis factor alpha-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2010; 62: 105–116.

    Article  CAS  Google Scholar 

  47. Tybulewicz VL . Vav-family proteins in T-cell signalling. Curr Opin Immunol 2005; 17: 267–274.

    Article  CAS  Google Scholar 

  48. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 2007; 449: 933–937.

    Article  CAS  Google Scholar 

  49. Milili M, Gauthier L, Veran J, Mattei MG, Schiff C . A new Groucho TLE4 protein may regulate the repressive activity of Pax5 in human B lymphocytes. Immunology 2002; 106: 447–455.

    Article  CAS  Google Scholar 

  50. Reith W, Ucla C, Barras E, Gaud A, Durand B, Herrero-Sanchez C et al. RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol Cell Biol 1994; 14: 1230–1244.

    Article  CAS  Google Scholar 

  51. Xu D, Jiang HR, Kewin P, Li Y, Mu R, Fraser AR et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci USA 2008; 105: 10913–10918.

    Article  CAS  Google Scholar 

  52. Verri Jr WA, Souto FO, Vieira SM, Almeida SC, Fukada SY, Xu D et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis 2010; 69: 1697–1703.

    Article  CAS  Google Scholar 

  53. Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S et al. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum 2009; 60: 738–749.

    Article  CAS  Google Scholar 

  54. Matsuyama Y, Okazaki H, Tamemoto H, Kimura H, Kamata Y, Nagatani K et al. Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis. J Rheumatol 2010; 37: 18–25.

    Article  CAS  Google Scholar 

  55. Hanyecz A, Berlo SE, Szanto S, Broeren CPM, Mikecz K, Glant TT . Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype. Arthritis Rheum 2004; 50: 1665–1676.

    Article  CAS  Google Scholar 

  56. Glant TT, Mikecz K . Proteoglycan aggrecan-induced arthritis. A murine autoimmune model of rheumatoid arthritis. Methods Mol Med 2004; 102: 313–338.

    CAS  PubMed  Google Scholar 

  57. Mikecz K, Brennan FR, Kim JH, Glant TT . Anti-CD44 treatment abrogates tissue edema and leukocyte infiltration in murine arthritis. Nat Med 1995; 1: 558–563.

    Article  CAS  Google Scholar 

  58. Manly KF, Cudmore Jr RH, Meer JM . Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 2001; 12: 930–932.

    Article  CAS  Google Scholar 

  59. Clee SM, Yandell BS, Schueler KM, Rabaglia ME, Richards OC, Raines SM et al. Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 2006; 38: 688–693.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH/NIAMS) (R01 AR059356), Dr Glant's endowment chair (Rush University Medical Center, Chicago, IL) and, in part, by the Grainger Foundation (Lake Forest, IL). We thank a number of our colleagues and members of the Midwest Orthopedics (Rush University Medical Center, Chicago), especially Drs JJ Jacobs and M Tunyogi-Csapo, who helped in the collection of human cartilage samples, members of the Comparative Research Center (Rush University Medical Center, Chicago) and Dr. JM Oswald, and Drs O Tarjanyi, B Farkas, and G Hutas for scoring, Dr. Andras Kadar for additional cytokine assays, and Beata Tryniszewska for genotyping of animals (all in Departments of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T T Glant.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glant, T., Adarichev, V., Boldizsar, F. et al. Disease-promoting and -protective genomic loci on mouse chromosomes 3 and 19 control the incidence and severity of autoimmune arthritis. Genes Immun 13, 336–345 (2012). https://doi.org/10.1038/gene.2012.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.2

Keywords

Search

Quick links