Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis

Abstract

Chromosome 5q31 spans the T helper (Th) 2-related cytokine gene cluster, which is potentially important in Th1/Th2 immune responses. The chromosome 5q23.2–31.3 has been recently identified as a region with suggestive evidence of linkage to tuberculosis in the Asian population. With the aim of fine-mapping a putative tuberculosis susceptibility locus, we investigated a family-based association test between the dense single nucleotide polymorphism (SNP) markers within chromosome 5q31 and tuberculosis in 205 Thai trio families. Of these, 75 SNPs located within candidate genes covering SLC22A4, SLC22A5, IRF1, IL5, RAD50, IL13, IL4, KIF3A and SEPT8 were genotyped using the DigiTag2 assay. Association analysis revealed the most significant association with tuberculosis in haplotypes comprising SNPs rs274559, rs274554 and rs274553 of SLC22A5 gene (PGlobal=2.02 × 10−6), which remained significant after multiple testing correction. In addition, two haplotypes within the SLC22A4 and KIF3A region were associated with tuberculosis. Haplotypes of SLC22A5 were significantly associated with the expression levels of RAD50 and IL13. The results show that the variants carried by the haplotypes of SLC22A4, SLC22A5 and KIF3A region potentially contribute to tuberculosis susceptibility among the Thai population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bloom BR, Small PM . The evolving relation between humans and Mycobacterium tuberculosis. N Engl J Med 1998; 338: 677–678.

    Article  CAS  Google Scholar 

  2. Comstock GW . Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 1978; 117: 621–624.

    CAS  PubMed  Google Scholar 

  3. van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT . Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med 2007; 176: 1281–1288.

    Article  Google Scholar 

  4. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 2000; 97: 8005–8009.

    Article  CAS  Google Scholar 

  5. Cervino AC, Lakiss S, Sow O, Bellamy R, Beyers N, Hoal-van Helden E et al. Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11-13 in African families. Hum Mol Genet 2002; 11: 1599–1603.

    Article  CAS  Google Scholar 

  6. Campbell SJ, Sabeti P, Fielding K, Sillah J, Bah B, Gustafson P et al. Variants of the CD40 ligand gene are not associated with increased susceptibility to tuberculosis in West Africa. Immunogenetics 2003; 55: 502–507.

    Article  CAS  Google Scholar 

  7. Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS et al. Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 2004; 5: 63–67.

    Article  CAS  Google Scholar 

  8. Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JM et al. Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 2004; 5: 46–57.

    Article  CAS  Google Scholar 

  9. Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M, Lazrak F et al. An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 2006; 203: 1679–1684.

    Article  Google Scholar 

  10. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G et al. Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 2008; 178: 203–207.

    Article  CAS  Google Scholar 

  11. Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 2009; 10: 77–83.

    Article  CAS  Google Scholar 

  12. Rihet P, Traore Y, Abel L, Aucan C, Traore-Leroux T, Fumoux F . Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet 1998; 63: 498–505.

    Article  CAS  Google Scholar 

  13. Flori L, Kumulungui B, Aucan C, Esnault C, Traore AS, Fumoux F et al. Linkage and association between Plasmodium falciparum blood infection levels and chromosome 5q31-q33. Genes Immun 2003; 4: 265–268.

    Article  CAS  Google Scholar 

  14. Marquet S, Abel L, Hillaire D, Dessein A . Full results of the genome-wide scan which localises a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Eur J Hum Genet 1999; 7: 88–97.

    Article  CAS  Google Scholar 

  15. Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66: 1863–1870.

    Article  CAS  Google Scholar 

  16. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    Article  CAS  Google Scholar 

  17. Kawashima T, Noguchi E, Arinami T, Yamakawa-Kobayashi K, Nakagawa H, Otsuka F et al. Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet 1998; 35: 502–504.

    Article  CAS  Google Scholar 

  18. Friberg C, Bjorck K, Nilsson S, Inerot A, Wahlstrom J, Samuelsson L . Analysis of chromosome 5q31-32 and psoriasis: confirmation of a susceptibility locus but no association with SNPs within SLC22A4 and SLC22A5. J Invest Dermatol 2006; 126: 998–1002.

    Article  CAS  Google Scholar 

  19. Marsh DG, Neely JD, Breazeale DR, Ghosh B, Freidhoff LR, Ehrlich-Kautzky E et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994; 264: 1152–1156.

    Article  CAS  Google Scholar 

  20. Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI et al. Genetic susceptibility to asthma--bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 1995; 333: 894–900.

    Article  CAS  Google Scholar 

  21. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The Collaborative Study on the Genetics of Asthma (CSGA). Nat Genet 1997; 15: 389–392.

  22. Li-Weber M, Krammer PH . Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol 2003; 3: 534–543.

    Article  CAS  Google Scholar 

  23. Lee GR, Fields PE, Griffin TJ, Flavell RA . Regulation of the Th2 cytokine locus by a locus control region. Immunity 2003; 19: 145–153.

    Article  CAS  Google Scholar 

  24. Onnie C, Fisher SA, King K, Mirza M, Roberts R, Forbes A et al. Sequence variation, linkage disequilibrium and association with Crohn's disease on chromosome 5q31. Genes Immun 2006; 7: 359–365.

    Article  CAS  Google Scholar 

  25. Seah GT, Scott M, Rock GAW . Type 2 cytokine gene activation and its relationship to extend of disease in patients with tuberculosis. J Infect Dis 2000; 181: 385–389.

    Article  CAS  Google Scholar 

  26. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007; 27: 505–517.

    Article  CAS  Google Scholar 

  27. van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol 1995; 33: 3234–3238.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry III CE et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun 2004; 72: 5511–5514.

    Article  CAS  Google Scholar 

  29. Nuchnoi P, Ohashi J, Naka I, Nacapunchai D, Tokunaga K, Nishida N et al. Linkage disequilibrium structure of the 5q31-33 region in a Thai population. J Hum Genet 2008; 53: 850–856.

    Article  CAS  Google Scholar 

  30. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40: 955–962.

    Article  CAS  Google Scholar 

  31. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36: 471–475.

    Article  CAS  Google Scholar 

  32. van Crevel R, Karyadi E, Preyers F, Leenders M, Kullberg BJ, Nelwan RH et al. Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J Infect Dis 2000; 181: 1194–1197.

    Article  CAS  Google Scholar 

  33. Vale RD . The molecular motor toolbox for intracellular transport. Cell 2003; 112: 467–480.

    Article  CAS  Google Scholar 

  34. Little KY, McLaughlin DP, Zhang L, Livermore CS, Dalack GW, McFinton PR et al. Cocaine, ethanol, and genotype effects on human midbrain serotonin transporter binding sites and mRNA levels. Am J Psychiatr 1998; 155: 207–213.

    Article  CAS  Google Scholar 

  35. Nishida N, Tanabe T, Takasu M, Suyama A, Tokunaga K . Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem 2007; 364: 78–85.

    Article  CAS  Google Scholar 

  36. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  37. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  Google Scholar 

  38. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . GRR: graphical representation of relationship errors. Bioinformatics 2001; 17: 742–743.

    Article  CAS  Google Scholar 

  39. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM . PBAT: tools for family-based association studies. Am J Hum Genet 2004; 74: 367–369.

    Article  Google Scholar 

  40. Luna A, Nicodemus KK . snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics 2007; 23: 774–776.

    Article  CAS  Google Scholar 

  41. Nyholt DR . A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765–769.

    Article  CAS  Google Scholar 

  42. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  43. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  44. Lee PH, Shatkay H . F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 2008; 36: D820–D824.

    Article  CAS  Google Scholar 

  45. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66: 87–98.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by International Cooperation Research grant, the Ministry of Health, Labor and Welfare from 2002 to 2004 and by a grant-in-aid for scientific research on priority areas ‘Comprehensive Genomics’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan and intramural grant from Department of Medical Sciences, Ministry of Public Health, Thailand. We thank all staffs and collaborators of the TB/HIV research project, Thailand, a collaborative research project between the Research Institute of Tuberculosis (RIT) and the Japan Anti-tuberculosis Association, and the Department of Medical Sciences, Ministry of Public Health for collecting the clinical information and samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Tokunaga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridruechai, C., Mahasirimongkol, S., Phromjai, J. et al. Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis. Genes Immun 11, 416–422 (2010). https://doi.org/10.1038/gene.2010.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.26

Keywords

This article is cited by

Search

Quick links