Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis

Abstract

Investigating genetic interactions (epistasis) has proven difficult despite the recent advances of both laboratory methods and statistical developments. With no ‘best’ statistical approach available, combining several analytical methods may be optimal for detecting epistatic interactions. Using a multi-stage analysis that incorporated supervised machine learning and methods of association testing, we investigated epistatic interactions with a well-established genetic factor (PTPN22 1858T) in a complex autoimmune disease (rheumatoid arthritis (RA)). Our analysis consisted of four principal stages: Stage I (data reduction)—identifying candidate chromosomal regions in 292 affected sibling pairs, by predicting PTPN22 concordance using multipoint identity-by-descent probabilities and a supervised machine learning algorithm (Random Forests); Stage II (extension analysis)—testing detailed genetic data within candidate chromosomal regions for epistasis with PTPN22 1858T in 677 cases and 750 controls using logistic regression; Stage III (replication analysis)—confirmation of epistatic interactions in 947 cases and 1756 controls; Stage IV (combined analysis)—a pooled analysis including all 1624 RA cases and 2506 control subjects for final estimates of effect size. A total of seven replicating epistatic interactions were identified. SNP variants within CDH13, MYO3A, CEP72 and near WFDC1 showed significant evidence for interaction with PTPN22, affecting susceptibility to RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008; 9: 356–369.

    CAS  PubMed  Google Scholar 

  2. Gregersen PK, Olsson L . Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 2009; 27: 363–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bell JT . A two-dimensional genome scan for rheumatoid arthritis susceptibility loci. BMC Proc 2007; 1 (Suppl 1): S63.

    PubMed  PubMed Central  Google Scholar 

  4. Mei L, Li X, Yang K, Cui J, Fang B, Guo X et al. Evaluating gene × gene and gene × smoking interaction in rheumatoid arthritis using candidate genes in GAW15. BMC Proc 2007; 1 (Suppl 1): S17.

    PubMed  PubMed Central  Google Scholar 

  5. Glaser B, Nikolov I, Chubb D, Hamshere ML, Segurado R, Moskvina V et al. Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests. BMC Proc 2007; 1 (Suppl 1): S54.

    PubMed  PubMed Central  Google Scholar 

  6. Ma L, Dvorkin D, Garbe JR, Da Y . Genome-wide analysis of single-locus and epistasis single-nucleotide polymorphism effects on anti-cyclic citrullinated peptide as a measure of rheumatoid arthritis. BMC Proc 2007; 1 (Suppl 1): S127.

    PubMed  PubMed Central  Google Scholar 

  7. Ritchie MD, Bartlett J, Bush WS, Edwards TL, Motsinger AA, Torstenson ES . Exploring epistasis in candidate genes for rheumatoid arthritis. BMC Proc 2007; 1 (Suppl 1): S70.

    PubMed  PubMed Central  Google Scholar 

  8. Ding Y, Cong L, Ionita-Laza I, Lo SH, Zheng T . Constructing gene association networks for rheumatoid arthritis using the backward genotype-trait association (BGTA) algorithm. BMC Proc 2007; 1 (Suppl 1): S13.

    PubMed  PubMed Central  Google Scholar 

  9. Musani SK, Shriner D, Liu N, Feng R, Coffey CS, Yi N et al. Detection of gene × gene interactions in genome-wide association studies of human population data. Hum Hered 2007; 63: 67–84.

    CAS  PubMed  Google Scholar 

  10. Cordell HJ . Genome-wide association studies: detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009; 10: 392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gregersen PK, Behrens TW . Genetics of autoimmune diseases—disorders of immune homeostasis. Nat Rev Genet 2006; 7: 917–928.

    CAS  PubMed  Google Scholar 

  12. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Etzel C et al. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48: 906–916.

    CAS  PubMed  Google Scholar 

  13. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kallberg H, Padyukov L, Plenge RM, Ronnelid J, Gregersen PK, van der Helm-van Mil AH et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 2007; 80: 867–875.

    PubMed  PubMed Central  Google Scholar 

  15. Gregersen PK, Lee HS, Batliwalla F, Begovich AB . PTPN22: setting thresholds for autoimmunity. Semin Immunol 2006; 18: 214–223.

    CAS  PubMed  Google Scholar 

  16. Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T . Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 2008; 26: 29–55.

    CAS  PubMed  Google Scholar 

  17. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Monteiro J et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet 2001; 68: 927–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Amos CI, Chen WV, Lee A, Li W, Kern M, Lundsten R et al. High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun 2006; 7: 277–286.

    CAS  PubMed  Google Scholar 

  19. Rodriguez MR, Nunez-Roldan A, Aguilar F, Valenzuela A, Garcia A, Gonzalez-Escribano MF . Association of the CTLA4 3′ untranslated region polymorphism with the susceptibility to rheumatoid arthritis. Hum Immunol 2002; 63: 76–81.

    CAS  PubMed  Google Scholar 

  20. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003; 34: 395–402.

    CAS  PubMed  Google Scholar 

  21. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 2007; 357: 1199–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomson W, Barton A, Ke X, Eyre S, Hinks A, Bowes J et al. Rheumatoid arthritis association at 6q23. Nat Genet 2007; 39: 1431–1433.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Barton A, Thomson W, Ke X, Eyre S, Hinks A, Bowes J et al. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat Genet 2008; 40: 1156–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Barton A, Thomson W, Ke X, Eyre S, Hinks A, Bowes J et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum Mol Genet 2008; 17: 2274–2279.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL et al. REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 2009; 41: 820–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. John S, Amos C, Shephard N, Chen W, Butterworth A, Etzel C et al. Linkage analysis of rheumatoid arthritis in US and UK families reveals interactions between HLA-DRB1 and loci on chromosomes 6q and 16p. Arthritis Rheum 2006; 54: 1482–1490.

    CAS  PubMed  Google Scholar 

  28. Newman WG, Zhang Q, Liu X, Walker E, Ternan H, Owen J et al. Rheumatoid arthritis association with the FCRL3 -169C polymorphism is restricted to PTPN22 1858T-homozygous individuals in a Canadian population. Arthritis Rheum 2006; 54: 3820–3827.

    CAS  PubMed  Google Scholar 

  29. Julia A, Moore J, Miquel L, Alegre C, Barcelo P, Ritchie M et al. Identification of a two-loci epistatic interaction associated with susceptibility to rheumatoid arthritis through reverse engineering and multifactor dimensionality reduction. Genomics 2007; 90: 6–13.

    CAS  PubMed  Google Scholar 

  30. Klareskog L, Stolt P, Lundberg K, Kallberg H, Bengtsson C, Grunewald J et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006; 54: 38–46.

    CAS  PubMed  Google Scholar 

  31. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associated with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill RJ, Zozulya S, Lu YL, Ward K, Gishizky M, Jallal B . The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol 2002; 30: 237–244.

    CAS  PubMed  Google Scholar 

  33. Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 2006; 281: 11002–11010.

    CAS  PubMed  Google Scholar 

  34. Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005; 37: 1317–1319.

    CAS  PubMed  Google Scholar 

  35. Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH . Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 2007; 179: 4704–4710.

    CAS  PubMed  Google Scholar 

  36. Arechiga AF, Habib T, He Y, Zhang X, Zhang ZY, Funk A et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J Immunol 2009; 182: 3343–3347.

    CAS  PubMed  Google Scholar 

  37. Zikherman J, Hermiston M, Steiner D, Hasegawa K, Chan A, Weiss A . PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol 2009; 182: 4093–4106.

    CAS  PubMed  Google Scholar 

  38. Dames SA, Bang E, Haussinger D, Ahrens T, Engel J, Grzesiek S . Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain. J Biol Chem 2008; 283: 23485–23495.

    CAS  PubMed  Google Scholar 

  39. Philippova MP, Bochkov VN, Stambolsky DV, Tkachuk VA, Resink TJ . T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett 1998; 429: 207–210.

    CAS  PubMed  Google Scholar 

  40. Philippova M, Ivanov D, Allenspach R, Takuwa Y, Erne P, Resink T . RhoA and Rac mediate endothelial cell polarization and detachment induced by T-cadherin. FASEB J 2005; 19: 588–590.

    CAS  PubMed  Google Scholar 

  41. Joshi MB, Philippova M, Ivanov D, Allenspach R, Erne P, Resink TJ . T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 2005; 19: 1737–1739.

    CAS  PubMed  Google Scholar 

  42. Philippova M, Banfi A, Ivanov D, Gianni-Barrera R, Allenspach R, Erne P et al. Atypical GPI-anchored T-cadherin stimulates angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 2006; 26: 2222–2230.

    CAS  PubMed  Google Scholar 

  43. Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, Parsons PG et al. H-cadherin expression reduces invasion of malignant melanoma. Pigment Cell Melanoma Res 2009; 22: 296–306.

    CAS  PubMed  Google Scholar 

  44. Adachi Y, Takeuchi T, Nagayama T, Ohtsuki Y, Furihata M . Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett 2009; 583: 430–436.

    CAS  PubMed  Google Scholar 

  45. Franke B, Neale BM, Faraone SV . Genome-wide association studies in ADHD. Hum Genet 2009; 126: 13–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet 2009; 18: 2288–2296.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Axenovich TI, Zorkoltseva IV, Belonogova NM, Struchalin MV, Kirichenko AV, Kayser M et al. Linkage analysis of adult height in a large pedigree from a Dutch genetically isolated population. Hum Genet 2009; 126: 457–471.

    PubMed  Google Scholar 

  48. Dose AC, Hillman DW, Wong C, Sohlberg L, Lin-Jones J, Burnside B . Myo3A, one of two class III myosin genes expressed in vertebrate retina, is localized to the calycal processes of rod and cone photoreceptors and is expressed in the sacculus. Mol Biol Cell 2003; 14: 1058–1073.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, Haika S et al. From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci USA 2002; 99: 7518–7523.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Elwany S, el Garf A, Kamel T . Hearing and middle ear function in rheumatoid arthritis. J Rheumatol 1986; 13: 878–881.

    CAS  PubMed  Google Scholar 

  51. Ozcan M, Karakus MF, Gunduz OH, Tuncel U, Sahin H . Hearing loss and middle ear involvement in rheumatoid arthritis. Rheumatol Int 2002; 22: 16–19.

    PubMed  Google Scholar 

  52. Murdin L, Patel S, Walmsley J, Yeoh LH . Hearing difficulties are common in patients with rheumatoid arthritis. Clin Rheumatol 2008; 27: 637–640.

    PubMed  Google Scholar 

  53. Schneider ME, Dose AC, Salles FT, Chang W, Erickson FL, Burnside B et al. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 2006; 26: 10243–10252.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacobelli J, Bennett FC, Pandurangi P, Tooley AJ, Krummel MF . Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. J Immunol 2009; 182: 2041–2050.

    CAS  PubMed  Google Scholar 

  55. Oshimori N, Li X, Ohsugi M, Yamamoto T . Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. EMBO J 2009; 28: 2066–2076.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Miyawaki S, Asanuma H, Nishiyama S, Yoshinaga Y . Clinical and serological heterogeneity in patients with anticentromere antibodies. J Rheumatol 2005; 32: 1488–1494.

    PubMed  Google Scholar 

  57. Walker JG, Fritzler MJ . Update on autoantibodies in systemic sclerosis. Curr Opin Rheumatol 2007; 19: 580–591.

    PubMed  Google Scholar 

  58. Wu R, Shovman O, Zhang Y, Gilburd B, Zandman-Goddard G, Shoenfeld Y . Increased prevalence of anti-third generation cyclic citrullinated peptide antibodies in patients with rheumatoid arthritis and CREST syndrome. Clin Rev Allergy Immunol 2007; 32: 47–56.

    CAS  PubMed  Google Scholar 

  59. Salliot C, Gottenberg JE, Bengoufa D, Desmoulins F, Miceli-Richard C, Mariette X . Anticentromere antibodies identify patients with Sjogren's syndrome and autoimmune overlap syndrome. J Rheumatol 2007; 34: 2253–2258.

    CAS  PubMed  Google Scholar 

  60. Larsen M, Ressler SJ, Gerdes MJ, Lu B, Byron M, Lawrence JB et al. The WFDC1 gene encoding ps20 localizes to 16q24, a region of LOH in multiple cancers. Mamm Genome 2000; 11: 767–773.

    CAS  PubMed  Google Scholar 

  61. McAlhany SJ, Ressler SJ, Larsen M, Tuxhorn JA, Yang F, Dang TD et al. Promotion of angiogenesis by ps20 in the differential reactive stroma prostate cancer xenograft model. Cancer Res 2003; 63: 5859–5865.

    CAS  PubMed  Google Scholar 

  62. Madar S, Brosh R, Buganim Y, Ezra O, Goldstein I, Solomon H et al. Modulated expression of WFDC1 during carcinogenesis and cellular senescence. Carcinogenesis 2009; 30: 20–27.

    CAS  PubMed  Google Scholar 

  63. Alvarez R, Reading J, King DF, Hayes M, Easterbrook P, Farzaneh F et al. WFDC1/ps20 is a novel innate immunomodulatory signature protein of human immunodeficiency virus (HIV)-permissive CD4+ CD45RO+ memory T cells that promotes infection by upregulating CD54 integrin expression and is elevated in HIV type 1 infection. J Virol 2008; 82: 471–486.

    CAS  PubMed  Google Scholar 

  64. Altshuler D, Daly MJ, Lander ES . Genetic mapping in human disease. Science 2008; 322: 881–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43: 30–37.

    CAS  PubMed  Google Scholar 

  66. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 2002; 71: 585–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ling S, Li Z, Borschukova O, Xiao L, Pumpens P, Holoshitz J . The rheumatoid arthritis shared epitope increases cellular susceptibility to oxidative stress by antagonizing an adenosine-mediated anti-oxidative pathway. Arthritis Res Ther 2007; 9: R5.

    PubMed  PubMed Central  Google Scholar 

  68. Ling S, Pi X, Holoshitz J . The rheumatoid arthritis shared epitope triggers innate immune signaling via cell surface calreticulin. J Immunol 2007; 179: 6359–6367.

    CAS  PubMed  Google Scholar 

  69. Lee AT, Li W, Liew A, Bombardier C, Weisman M, Massarotti EM et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun 2005; 6: 129–133.

    CAS  PubMed  Google Scholar 

  70. Harrison P, Pointon JJ, Farrar C, Brown MA, Wordsworth BP . Effects of PTPN22 C1858 T polymorphism on susceptibility and clinical characteristics of British Caucasian rheumatoid arthritis patients. Rheumatology (Oxford) 2006; 45: 1009–1011.

    CAS  Google Scholar 

  71. Costenbader KH, Chang SC, De Vivo I, Plenge R, Karlson EW . Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking. Arthritis Res Ther 2008; 10: R52.

    PubMed  PubMed Central  Google Scholar 

  72. Kokkonen H, Johansson M, Innala L, Jidell E, Rantapaa-Dahlqvist S . The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early rheumatoid arthritis in northern Sweden. Arthritis Res Ther 2007; 9: R56.

    PubMed  PubMed Central  Google Scholar 

  73. Ding B, Padyukov L, Lundstrom E, Seielstad M, Plenge RM, Oksenberg JR et al. Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in the extended major histocompatibility complex region. Arthritis Rheum 2009; 60: 30–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    CAS  PubMed  Google Scholar 

  75. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld FC et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000; 43: 155–163.

    CAS  PubMed  Google Scholar 

  76. Wolfe F, Michaud K, Gefeller O, Choi HK . Predicting mortality in patients with rheumatoid arthritis. Arthritis Rheum 2003; 48: 1530–1542.

    PubMed  Google Scholar 

  77. Fries JF, Wolfe F, Apple R, Erlich H, Bugawan T, Holmes T et al. HLA-DRB1 genotype associations in 793 white patients from a rheumatoid arthritis inception cohort: frequency, severity, and treatment bias. Arthritis Rheum 2002; 46: 2320–2329.

    CAS  PubMed  Google Scholar 

  78. Weisman B, Bombardier C, Massarotti E . Analysis at one year of an inception cohort of early rheumatoid arthritis: the SONORA study. Arthritis Rheum 2003; 48: S119.

    Google Scholar 

  79. Mitchell MK, Gregersen PK, Johnson S, Parsons R, Vlahov D . The New York Cancer Project: rationale, organization, design, and baseline characteristics. J Urban Health 2004; 81: 301–310.

    PubMed  PubMed Central  Google Scholar 

  80. Sokka T, Pincus T . An Early Rheumatoid Arthritis Treatment Evaluation Registry (ERATER) in the United States. Clin Exp Rheumatol 2005; 23 (5 Suppl 39): S178–S181.

    CAS  PubMed  Google Scholar 

  81. Mikuls TR, Kazi S, Cipher D, Hooker R, Kerr GS, Richards JS et al. The association of race and ethnicity with disease expression in male US veterans with rheumatoid arthritis. J Rheumatol 2007; 34: 1480–1484.

    PubMed  Google Scholar 

  82. Kolfenbach JR, Deane KD, Derber LA, O’Donnell C, Weisman MH, Buckner JH et al. A prospective approach to investigating the natural history of pre-clinical rheumatoid arthritis (RA) using first-degree relatives of probands with RA. Arthritis Care Res 2009; 61: 1735–1742.

    Google Scholar 

  83. Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 2008; 30: 69–78.

    Google Scholar 

  84. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P . Association mapping in structured populations. Am J Hum Genet 2000; 67: 170–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Seldin MF, Shigeta R, Villoslada P, Selmi C, Tuomilehto J, Silva G et al. European population substructure: clustering of northern and southern populations. PLoS Genet 2006; 2: e143.

    PubMed  PubMed Central  Google Scholar 

  86. Li Y, Abecasis G . Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 2006; S79: 2290.

    Google Scholar 

  87. Breiman L . Random Forests. Mach Learn 2001; 45: 5–32.

    Google Scholar 

  88. Markianos K, Daly MJ, Kruglyak L . Efficient multipoint linkage analysis through reduction of inheritance space. Am J Hum Genet 2001; 68: 963–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful for the contributions made by the study participants and we thank Ben Goldstein for analytical discussions. PKG is supported by grant from the National Institute of Health (NO1-AR-2-2263) and the Eileen Ludwig Greenland Center for Rheumatoid Arthritis (RO1 AR44422). LAC is supported by the National Institute of Health (K24 AR02175). These studies were carried out in part at the General Clinical Research Center, Moffitt Hospital, University of California at San Francisco, with funds provided by the National Center for Research Resources, US Public Health Service (5 MO1 RR-00079). The UCSF Rheumatoid Arthritis Genetics Project collection was supported by the US Public Health Service (P60 AR 20684). The SERA cohort is supported by the National Institute of Health (R01 AR051394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Barcellos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, F., Ramsay, P., Madden, E. et al. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis. Genes Immun 11, 199–208 (2010). https://doi.org/10.1038/gene.2009.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.110

Keywords

This article is cited by

Search

Quick links