Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variation in IL7R predisposes to sarcoid inflammation

Abstract

Sarcoidosis is a chronic granulomatous disorder characterized by a massive influx of Th1 lymphocytes. Both naive and memory T cells express high levels of interleukin 7 receptor-α (IL7Rα), encoded by the IL7R gene. The purpose of this study was to investigate the role of the IL7R gene region in susceptibility to sarcoidosis. Six common single-nucleotide polymorphisms (SNPs) spanning IL7R were genotyped and analyzed in 475 sarcoidosis patients and 465 healthy controls. Replication of one significant associated SNP was carried out in 206 independent sarcoidosis patients, 127 controls and 126 patients with Löfgren's disease. The rs10213865 SNP was associated with sarcoidosis (P=0.008), and in silico analysis showed a complete linkage (r2=1, D′=1) with a functional nonsynonymous coding SNP in exon 6 (rs6897932, T244I). Combined analysis of 663 individuals with sarcoidosis and 586 controls (homozygous carriers of risk allele, P=5 × 10−4, odds ratio=1.49 (1.19–1.86)) provided strong statistical support for a genuine association of IL7R with the risk of sarcoidosis. In addition, we report the same trend between variation in the IL7R gene and patients with Löfgren's disease, suggesting that variation in IL7R may confer general risk for developing granulomatous lung disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 2008; 40: 1103–1106.

    Article  CAS  Google Scholar 

  2. Iannuzzi MC, Iyengar SK, Gray-McGuire C, Elston RC, Baughman RP, Donohue JF et al. Genome-wide search for sarcoidosis susceptibility genes in African Americans. Genes Immun 2005; 6: 509–518.

    Article  CAS  Google Scholar 

  3. Schurmann M, Reichel P, Muller-Myhsok B, Schlaak M, Muller-Quernheim J, Schwinger E . Results from a genome-wide search for predisposing genes in sarcoidosis. Am J Respir Crit Care Med 2001; 164: 840–846.

    Article  CAS  Google Scholar 

  4. Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 2005; 37: 357–364.

    Article  CAS  Google Scholar 

  5. Grunewald J . Genetics of sarcoidosis. Curr Opin Pulm Med 2008; 14: 434–439.

    Article  CAS  Google Scholar 

  6. Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 1993; 262: 1877–1880.

    Article  CAS  Google Scholar 

  7. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R . Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 2003; 4: 1191–1198.

    Article  CAS  Google Scholar 

  8. Kallies A . Distinct regulation of effector and memory T-cell differentiation. Immunol Cell Biol 2008; 86: 325–332.

    Article  CAS  Google Scholar 

  9. Sprent J, Cho JH, Boyman O, Surh CD . T cell homeostasis. Immunol Cell Biol 2008; 86: 312–319.

    Article  CAS  Google Scholar 

  10. Li J, Huston G, Swain SL . IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med 2003; 198: 1807–1815.

    Article  CAS  Google Scholar 

  11. Fry TJ, Mackall CL . The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol 2005; 174: 6571–6576.

    Article  CAS  Google Scholar 

  12. Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt RW et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 2007; 25: 193–219.

    Article  CAS  Google Scholar 

  13. Watanabe N, Hanabuchi S, Soumelis V, Yuan W, Ho S, de Waal MR et al. Human thymic stromal lymphopoietin promotes dendritic cell-mediated CD4+ T cell homeostatic expansion. Nat Immunol 2004; 5: 426–434.

    Article  CAS  Google Scholar 

  14. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005; 436: 1181–1185.

    Article  CAS  Google Scholar 

  15. Rochman I, Watanabe N, Arima K, Liu YJ, Leonard WJ . Cutting edge: direct action of thymic stromal lymphopoietin on activated human CD4+ T cells. J Immunol 2007; 178: 6720–6724.

    Article  CAS  Google Scholar 

  16. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472–476.

    Article  CAS  Google Scholar 

  17. Kurz T, Hoffjan S, Hayes MG, Schneider D, Nicolae R, Heinzmann A et al. Fine mapping and positional candidate studies on chromosome 5p13 identify multiple asthma susceptibility loci. J Allergy Clin Immunol 2006; 118: 396–402.

    Article  CAS  Google Scholar 

  18. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 2006; 38: 617–619.

    Article  CAS  Google Scholar 

  19. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007; 39: 1083–1091.

    Article  CAS  Google Scholar 

  20. Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J . Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 2008; 5: 79–89.

    Article  CAS  Google Scholar 

  21. Abdallah A, Sato H, Grutters JC, Veeraraghavan S, Lympany PA, Ruven HJ et al. Inhibitor kappa B-alpha (IkappaB-alpha) promoter polymorphisms in UK and Dutch sarcoidosis. Genes Immun 2003; 4: 450–454.

    Article  CAS  Google Scholar 

  22. Amoli MM, Lopez-Agreda H, Suarez-Amor O, Martin J, Ollier WE, Gonzalez-Gay MA . Endothelial nitric oxide synthase polymorphisms in biopsy-proven erythema nodosum from a defined population. Clin Exp Rheumatol 2007; 25: 624–626.

    CAS  PubMed  Google Scholar 

  23. Kruit A, Ruven HJ, Grutters JC, van den Bosch JM . Angiotensin-converting enzyme 2 (ACE2) haplotypes are associated with pulmonary disease phenotypes in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22: 195–203.

    PubMed  Google Scholar 

  24. Kruit A, Grutters JC, Ruven HJ, van Moorsel CH, Weiskirchen R, Mengsteab S et al. Transforming growth factor-beta gene polymorphisms in sarcoidosis patients with and without fibrosis. Chest 2006; 129: 1584–1591.

    Article  CAS  Google Scholar 

  25. Spagnolo P, Renzoni EA, Wells AU, Sato H, Grutters JC, Sestini P et al. C-C chemokine receptor 2 and sarcoidosis: association with Lofgren's syndrome. Am J Respir Crit Care Med 2003; 168: 1162–1166.

    Article  Google Scholar 

  26. Spagnolo P, Renzoni EA, Wells AU, Copley SJ, Desai SR, Sato H et al. C-C chemokine receptor 5 gene variants in relation to lung disease in sarcoidosis. Am J Respir Crit Care Med 2005; 172: 721–728.

    Article  Google Scholar 

  27. Carlisle J, Evans W, Hajizadeh R, Nadaf M, Shepherd B, Ott RD et al. Multiple mycobacterium antigens induce interferon-gamma production from sarcoidosis peripheral blood mononuclear cells. Clin Exp Immunol 2007; 150: 460–468.

    Article  CAS  Google Scholar 

  28. Taflin C, Miyara M, Nochy D, Valeyre D, Naccache JM, Altare F et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am J Pathol 2009; 174: 497–508.

    Article  Google Scholar 

  29. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701–1711.

    Article  CAS  Google Scholar 

  30. Bayer AL, Lee JY, de la BA, Surh CD, Malek TR . A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J Immunol 2008; 181: 225–234.

    Article  CAS  Google Scholar 

  31. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY . A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 6: 1142–1151.

    Article  CAS  Google Scholar 

  32. Mazzucchelli R, Hixon JA, Spolski R, Chen X, Li WQ, Hall VL et al. Development of regulatory T cells requires IL-7R{alpha} stimulation by IL-7 or TSLP. Blood 2008; 112: 3283–3292.

    Article  CAS  Google Scholar 

  33. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002; 3: 673–680.

    Article  CAS  Google Scholar 

  34. Costabel U, Hunninghake GW . ATS/ERS/WASOG statement on sarcoidosis. Sarcoidosis Statement Committee. American Thoracic Society. European Respiratory Society. World Association for Sarcoidosis and Other Granulomatous Disorders. Eur Respir J 1999; 14: 735–737.

    Article  CAS  Google Scholar 

  35. Hunninghake GW, Costabel U, Ando M, Baughman R, Cordier JF, du BR et al. ATS/ERS/WASOG statement on sarcoidosis. American Thoracic Society/European Respiratory Society/World Association of Sarcoidosis and other Granulomatous Disorders. Sarcoidosis Vasc Diffuse Lung Dis 1999; 16: 149–173.

    CAS  PubMed  Google Scholar 

  36. Heron M, Slieker WA, Zanen P, van Lochem EG, Hooijkaas H, van den Bosch JM et al. Evaluation of CD103 as a cellular marker for the diagnosis of pulmonary sarcoidosis. Clin Immunol 2008; 126: 338–344.

    Article  CAS  Google Scholar 

  37. Kruit A, Grutters JC, Gerritsen WB, Kos S, Wodzig WK, van den Bosch JM et al. ACE I/D-corrected Z-scores to identify normal and elevated ACE activity in sarcoidosis. Respir Med 2007; 101: 510–515.

    Article  Google Scholar 

  38. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  39. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005; 95: 221–227.

    Article  CAS  Google Scholar 

  40. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  41. Stephens M, Donnelly P . A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Grutters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heron, M., Grutters, J., van Moorsel, C. et al. Variation in IL7R predisposes to sarcoid inflammation. Genes Immun 10, 647–653 (2009). https://doi.org/10.1038/gene.2009.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.55

Keywords

This article is cited by

Search

Quick links