Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Follow-up examination of linkage and association to chromosome 1q43 in multiple sclerosis

Abstract

Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative disease affecting >4 00 000 individuals in the United States. Population and family-based studies have suggested that there is a strong genetic component. Numerous genomic linkage screens have identified regions of interest for MS loci. Our own second-generation genome-wide linkage study identified a handful of non-major histocompatibility complex regions with suggestive linkage. Several of these regions were further examined using single-nucleotide polymorphisms (SNPs) with average spacing between SNPs of 1.0 Mb in a dataset of 173 multiplex families. The results of that study provided further evidence for the involvement of the chromosome 1q43 region. This region is of particular interest given linkage evidence in studies of other autoimmune and inflammatory diseases including rheumatoid arthritis and systemic lupus erythematosus. In this follow-up study, we saturated the region with 700 SNPs (average spacing of 10 kb per SNP) in search of disease-associated variation within this region. We found preliminary evidence to suggest that common variation within the RGS7 locus may be involved in disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Barcellos LF, Oksenberg JR, Green AJ, Bucher P, Rimmler JB, Schmidt S et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; 125: 150–158.

    Article  CAS  Google Scholar 

  2. Akesson E, Oturai A, Berg J, Fredrikson S, Andersen O, Harbo HF et al. A genome-wide screen for linkage in Nordic sib-pairs with multiple sclerosis. Genes Immun 2002; 3: 279–285.

    Article  CAS  Google Scholar 

  3. Ban M, Stewart GJ, Bennetts BH, Heard R, Simmons R, Maranian M et al. A genome screen for linkage in Australian sibling-pairs with multiple sclerosis. Genes Immun 2002; 3: 464–469.

    Article  CAS  Google Scholar 

  4. Broadley S, Sawcer S, D'Alfonso S, Hensiek A, Coraddu F, Gray J et al. A genome screen for multiple sclerosis in Italian families. Genes Immun 2001; 2: 205–210.

    Article  CAS  Google Scholar 

  5. Coraddu F, Sawcer S, D'Alfonso S, Lai M, Hensiek A, Solla E et al. A genome screen for multiple sclerosis in Sardinian multiplex families. Eur J Hum Genet 2001; 9: 621–626.

    Article  CAS  Google Scholar 

  6. Dyment DA, Sadovnick AD, Willer CJ, Armstrong H, Cader ZM, Wiltshire S et al. An extended genome scan in 442 Canadian multiple sclerosis-affected sibships: A report from the Canadian collaborative study group. Hum Mol Genet 2004; 13: 1005–1015.

    Article  CAS  Google Scholar 

  7. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472–476.

    Article  CAS  Google Scholar 

  8. Eraksoy M, Kurtuncu M, Akman-Demir G, Kilinc M, Gedizlioglu M, Mirza M et al. A whole genome screen for linkage in Turkish multiple sclerosis. J Neuroimmunol 2003; 143: 17–24.

    Article  CAS  Google Scholar 

  9. Haines JL, Ter Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The multiple sclerosis genetics group. Nat Genet 1996; 13: 469–471.

    Article  CAS  Google Scholar 

  10. Hensiek AE, Roxburgh R, Smilie B, Coraddu F, Akesson E, Holmans P et al. Updated results of the United Kingdom linkage-based genome screen in multiple sclerosis. J Neuroimmunol 2003; 143: 25–30.

    Article  CAS  Google Scholar 

  11. Kenealy SJ, Babron MC, Bradford Y, Schnetz-Boutaud N, Haines JL, Rimmler JB et al. A second-generation genomic screen for multiple sclerosis. Am J Hum Genet 2004; 75: 1070–1078.

    Article  CAS  Google Scholar 

  12. Kuokkanen S, Gschwend M, Rioux JD, Daly MJ, Terwilliger JD, Tienari PJ et al. Genomewide scan of multiple sclerosis in Finnish multiplex families. Am J Hum Genet 1997; 61: 1379–1387.

    Article  CAS  Google Scholar 

  13. Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464–476.

    Article  CAS  Google Scholar 

  14. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A et al. A high-density screen for linkage in multiple sclerosis—international multiple sclerosis genetics consortium. Am J Hum Genet 2005; 77: 454–467.

    Article  Google Scholar 

  15. Yaouanq J, Semana G, Eichenbaum S, Quelvennec E, Roth MP, Clanet M et al. Evidence for linkage disequilibrium between HLA-DRB1 gene and multiple sclerosis. The French research group on genetic susceptibility to MS. Science 1997; 276: 664–665.

    Article  CAS  Google Scholar 

  16. Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The multiple sclerosis genetics group. Hum Mol Genet 1998; 7: 1229–1234.

    Article  CAS  Google Scholar 

  17. Ligers A, Dyment DA, Willer CJ, Sadovnick AD, Ebers G, Risch N et al. Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am J Hum Genet 2001; 69: 900–903.

    Article  CAS  Google Scholar 

  18. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; 38: 1166–1172.

    Article  CAS  Google Scholar 

  19. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC haplotype project. Immunogenetics 2008; 60: 1–18.

    Article  CAS  Google Scholar 

  20. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007; 39: 1083–1091.

    Article  CAS  Google Scholar 

  21. International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A Sawcer S Lander ES, Daly MJ et al. Risk alleles for multiple sclerosis identified by a genomewide study N Engl J Med 2007; 357: 851–862.

    CAS  Google Scholar 

  22. International Multiple Sclerosis Genetics Consortium (IMSGC) Refining genetic associations in multiple sclerosis. Lancet Neurol. 2008; 7, 567–569.

  23. Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun 2008.

  24. Weber F, Fontaine B, Cournu-Rebeix I, Kroner A, Knop M, Lutz S et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun 2008; 9: 259–263.

    Article  CAS  Google Scholar 

  25. Kenealy SJ, Herrel LA, Bradford Y, Schnetz-Boutaud N, Oksenberg JR, Hauser SL et al. Examination of seven candidate regions for multiple sclerosis: strong evidence of linkage to chromosome 1q44. Genes Immun 2006.

  26. Ghosh S, Watanabe RM, Valle TT, Hauser ER, Magnuson VL, Langefeld CD et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet 2000; 67: 1174–1185.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hauser ER, Boehnke M . Genetic linkage analysis of complex genetic traits by using affected sibling pairs. Biometrics 1998; 54: 1238–1246.

    Article  CAS  Google Scholar 

  28. Hauser ER, Bass MP, Martin ER, Watanabe RM, Duren WL, Boehnke M . Power of the ordered subset method for detection and localization of genes in linkage analysis of complex traits. Am J Hum Genet 2001; 69: 529.

    Google Scholar 

  29. Goedde R, Sawcer S, Boehringer S, Miterski B, Sindern E, Haupts M et al. A genome screen for linkage disequilibrium in HLA-DRB1*15-positive Germans with multiple sclerosis based on 4666 microsatellite markers. Hum Genet 2002; 111: 270–277.

    Article  CAS  Google Scholar 

  30. Laaksonen M, Jonasdottir A, Fossdal R, Ruutiainen J, Sawcer S, Compston A et al. A whole genome association study in Finnish multiple sclerosis patients with 3669 markers. J Neuroimmunol 2003; 143: 70–73.

    Article  CAS  Google Scholar 

  31. Sawcer S, Maranian M, Setakis E, Curwen V, Akesson E, Hensiek A et al. A whole genome screen for linkage disequilibrium in multiple sclerosis confirms disease associations with regions previously linked to susceptibility. Brain 2002; 125: 1337–1347.

    Article  Google Scholar 

  32. Gaffney PM, Kearns GM, Shark KB, Ortmann WA, Selby SA, Malmgren ML et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci USA 1998; 95: 14875–14879.

    Article  CAS  Google Scholar 

  33. Gaffney PM, Ortmann WA, Selby SA, Shark KB, Ockenden TC, Rohlf KE et al. Genome screening in human systemic lupus erythematosus: results from a second minnesota cohort and combined analyses of 187 sib-pair families. Am J Hum Genet 2000; 66: 547–556.

    Article  CAS  Google Scholar 

  34. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Monteiro J et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet 2001; 68: 927–936.

    Article  CAS  Google Scholar 

  35. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Etzel C et al. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48: 906–916.

    Article  CAS  Google Scholar 

  36. MacKay K, Eyre S, Myerscough A, Milicic A, Barton A, Laval S et al. Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum 2002; 46: 632–639.

    Article  CAS  Google Scholar 

  37. Shai R, Quismorio FP, Li L, Kwon OJ, Morrison J, Wallace DJ et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999; 8: 639–644.

    Article  CAS  Google Scholar 

  38. Maier LM, Hafler DA . The developing mosaic of autoimmune disease risk. Nat Genet 2008; 40: 131–132.

    Article  CAS  Google Scholar 

  39. Margulies EH, Blanchette M, Haussler D, Green ED . NISC Comparative Sequencing Program. Identification and characterization of multi-species conserved sequences. Genome Res 2003; 13: 2507–2518.

    CAS  Google Scholar 

  40. McCauley JL, Kenealy SJ, Margulies EH, Schnetz-Boutaud N, Gregory SG, Hauser SL et al. SNPs in multi-species conserved sequences (MCS) as useful markers in association studies: a practical approach. BMC Genomics 2007; 8: 266.

    Article  Google Scholar 

  41. Hausmann ON, Hu WH, Keren-Raifman T, Witherow DS, Wang Q, Levay K et al. Spinal cord injury induces expression of RGS7 in microglia/macrophages in rats. Eur J Neurosci 2002; 15: 602–612.

    Article  Google Scholar 

  42. Goodkin DE, Doolittle TH, Hauser SL, Ransohoff RM, Roses AD, Rudick RA . Diagnostic criteria for multiple sclerosis research involving multiply affected families. Arch Neurol 1991; 48: 805–807.

    Article  CAS  Google Scholar 

  43. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227–231.

    Article  CAS  Google Scholar 

  44. Haynes C, Speer MC, Peedin M, Roses AD, Haines JL, Vance JM et al. PEDIGENE: a comprehensive data management system to facilitate efficient and rapid disease gene mapping. Am J Hum Genet 1995; 57: A193.

    Google Scholar 

  45. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  46. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  47. Cottingham RW, Idury RM, Schaffer AA . Faster sequential genetic linkage computations. Am J Hum Genet 1993; 53: 252–263.

    PubMed  PubMed Central  Google Scholar 

  48. Schaffer AA, Gupta SK, Shriram K, Cottingham RW . Avoiding recomputation in linkage analysis. Hum Hered 1994; 44: 225–237.

    Article  CAS  Google Scholar 

  49. Ott J . The number of families required to detect or exclude linkage heterogeneity. Am J Hum Genet 1986; 39: 159–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Browning BL . FLOSS: flexible ordered subset analysis for linkage mapping of complex traits. Bioinformatics 2006; 22: 512–513.

    Article  CAS  Google Scholar 

  51. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  52. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  53. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded through NIH grants NS051695 and NS32830 and a post-doctoral fellowship (FG 1718-A-1) to JLM from the National Multiple Sclerosis Society (NMSS). This project was performed through the use of the Vanderbilt Center for Human Genetics Research Core (CHGR) facilities (DNA Resources Core and Bioinformatics Core), as well as the Duke Center for Human Genetics Molecular Genetics Core. We also recognize the International Multiple Sclerosis Genetics Consortium (IMSGC) for the use of data generated by the efforts and support of this broader collaboration. Most notably, we thank the patients and families that contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Haines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCauley, J., Zuvich, R., Bradford, Y. et al. Follow-up examination of linkage and association to chromosome 1q43 in multiple sclerosis. Genes Immun 10, 624–630 (2009). https://doi.org/10.1038/gene.2009.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.53

Keywords

Search

Quick links