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ORIGINAL ARTICLE

Integrated analysis of genetic and proteomic data
identifies biomarkers associated with adverse events
following smallpox vaccination
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Complex clinical outcomes, such as adverse reaction to vaccination, arise from the concerted interactions among the myriad
components of a biological system. Therefore, comprehensive etiological models can be developed only through the integrated
study of multiple types of experimental data. In this study, we apply this paradigm to high-dimensional genetic and proteomic
data collected to elucidate the mechanisms underlying the development of adverse events (AEs) in patients after smallpox
vaccination. As vaccination was successful in all of the patients under study, the AE outcomes reported likely represent the
result of interactions among immune system components that result in excessive or prolonged immune stimulation. In this
study, we examined 1442 genetic variables (single nucleotide polymorphisms) and 108 proteomic variables (serum cytokine
concentrations) to model AE risk. To accomplish this daunting analytical task, we employed the Random Forests (RF) method
to filter the most important attributes, then we used the selected attributes to build a final decision tree model. This strategy is
well suited to integrated analysis, as relevant attributes may be selected from categorical or continuous data. Importantly, RF is
a natural approach for studying the type of gene—gene, gene—protein and protein—protein interactions we hypothesize to be
involved in the development of clinical AEs. RF importance scores for particular attributes take interactions into account, and
there may be interactions across data types. Combining information from previous studies on AEs related to smallpox
vaccination with the genetic and proteomic attributes identified by RF, we built a comprehensive model of AE development that
includes the cytokines intercellular adhesion molecule-1 (ICAM-1 or CD54), interleukin-10 (IL-10), and colony stimulating
factor-3 (CSF-3 or G-CSF) and a genetic polymorphism in the cyokine gene interleukin-4 (IL4). The biological factors included
in the model support our hypothesized mechanism for the development of AEs involving prolonged stimulation of inflammatory
pathways and an imbalance of normal tissue damage repair pathways. This study shows the utility of RF for such analytical
tasks, while both enhancing and reinforcing our working model of AE development after smallpox vaccination.
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ness of lymph nodes) and a generalized acneiform rash.
Collectively, these clinical reactions suggest that indivi-
duals suffering AEs have immune responses beyond the
necessary magnitude, or sustain the immune response

Introduction

Live attenuated vaccinia virus, delivered intradermally,
is the vaccine given to immunize individuals against

smallpox. Although vaccination of healthy adults with
vaccinia virus induces a protective response in the
majority of individuals immunized, vaccinia virus is
reactogenic in a significant number of vaccinees." The
most common adverse events (AEs) after vaccination
include fever, lymphadenopathy (swelling and tender-

Correspondence: Dr DM Reif, National Center for Computational
Toxicology, US Environmental Protection Agency, D343-03, 109 TW
Alexander Drive, Research Triangle Park, NC 27711, USA.

E-mail: reif.david@epa.gov

Received 11 June 2008; revised and accepted 27 August 2008;
published online 16 October 2008

longer than necessary.

To elucidate the complex pathophysiology underlying
unwanted responses to vaccination, we gathered high-
dimensional genetic and proteomic data in a cohort of
subjects in which a portion experienced an AE after
primary immunization with Aventis Pasteur smallpox
vaccine. Through a comprehensive examination of
systemic (serum) cytokine/chemokine changes com-
bined with the characterization of polymorphisms in a
large panel of candidate genes, we sought to provide a
thorough portrayal of the complex genetic and proteomic
interplay behind the development of AEs. Knowledge
of how risk factors in a subject's genetic back-
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ground interact with dynamically changing levels of
immunological proteins could shed light on important
therapeutic targets or pathways to direct vaccine
modification and pre-vaccination screening procedures.

It is increasingly gaining acceptance that complex
clinical outcomes, such as adverse reaction to vaccina-
tion, arise from the concerted interactions among the
myriad components of a biological system.? Complica-
ting genetic factors, such as multiple contributing loci
and/or susceptibility alleles, incomplete penetrance and
epistasis, are further convoluted by proteomic, metabo-
lomic and environmental effects.®> If such a multiscale
system is to be understood, then interactions among its
many attributes must be considered.* Although there is
considerable intuitive appeal to the incorporation of
multiple types of biological data, simultaneous analysis
of information on different scales of measurement (that
is, continuous proteomic data and categorical genetic
data) creates additional analytical challenges. Therefore,
appropriate computational analysis methods must
traverse large numbers of input variables and handle
diverse data types. For this study, we employed a two-
stage analytical strategy. The first step was to filter a list
of over 1500 genetic and proteomic attributes, taking
interactions within and across data types into account,
down to an analytically tractable subset of candidates.
The second step involved careful statistical and biolo-
gical exploration of the filtered subset of candidate
attributes, resulting in a final model of AE development.

For the first (filter) step, we implemented a random
forest™ (RF) approach.® RF is a machine learning
technique that builds a forest of classification trees by
sampling, with replacement, from the data and selecting
the attribute at each tree node from a random subset of
all attributes. The RF method offers many advantages for
the analysis of diverse biological data. First, it can handle
a large number of input attributes, both discrete (for
example, single nucleotide polymorphisms, or SNPs)
and continuous (for example, microarray expression
levels or data from high-throughput proteomic techno-
logies). Second, RF estimates the relative importance of
attributes in discriminating between classes (in this case,
AE status), thus providing a metric for feature selection.
Third, RF produces a highly accurate classifier with an
internal unbiased estimate of generalizability during the
forest-building process. Fourth, RF is robust in the
presence of etiological heterogeneity and missing data.
Finally, learning is fast and computation time is modest
even for very large data sets.”

In the second (modeling) step, we took advantage of
the tractable number of attributes identified by the RF
filter to explore thoroughly the statistical and biological
relationships among the attributes and AE outcomes.
Decision trees were used to derive a descriptive,
biologically interpretable model of the functional inter-
actions among the attributes associated with systemic
AEs. Our final model justified our multiscale analysis
strategy, in that it included the cytokines intercellular
adhesion molecule-1 (ICAM-1 or CD54), interleukin-10
(IL-10) and colony stimulating factor-3 (CSF-3 or G-CSF),
as well as an SNP in interleukin-4 (IL4). Evaluating our
final model from an immunological perspective, we
conclude that AEs in response to smallpox vaccination
result from the hyperactivation of inflammatory path-
ways, leading to excess recruitment and stimulation of
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monocytes in peripheral tissues. This model is consistent
with work demonstrating overstimulation of inflamma-
tory and tissue damage repair pathways developed in
earlier studies of AEs after smallpox vaccination.®"

Materials and methods

Study subjects

Vaccines, study subjects and clinical vaccine study
design have been described in detail.” Briefly, 148 (116
with recorded AE information) healthy adults were
enrolled at the Vanderbilt University Medical Center as
part of a multicenter study of primary immunization
against smallpox using the Aventis Pasteur smallpox
vaccine at National Institutes of Health (NIH) Vaccine
and Treatment Evaluation Units. NIH-DMID Protocol 02-
054 was implemented. Volunteers were eligible if they
had no smallpox vaccination scar, no history of vaccinia
virus immunization, normal renal and hepatic serum
chemistry values, no contraindications against immuni-
zation (pregnancy, immunosuppression or eczema) and
negative serum test results for hepatitis B surface
antigen, hepatitis C virus antibody, rapid plasma reagin
and HIV-1 ELISA. There were a total of 61 subjects for
whom both genetic and proteomic data were gathered.
Individuals were asked to self-identify race; white (60)
and Asian (1) were the only categories identified in this
cohort. To facilitate comparison with earlier studies, and
because there was no statistical difference in age, gender
or race according to AE status (data not shown), the data
were not adjusted for these covariates.

Clinical assessments

Details of the clinical assessments have been described
earlier.® For all study subjects, a team of trained physicians
and nurse providers examined the medical history and
clinical symptoms to ensure consistent clinical assessment.
Subjects were examined on five visits within the first
month after vaccination and were assessed for occurrence
of an AE. Collection of serum for cytokine measurements
occurred at the evaluation just before vaccination (base-
line) and at the evaluation between days 5 and 7 post-
vaccination (acute phase). Although all AEs were noted,
only systemic AEs were considered in this study, as we
expected these to be associated more strongly with serum
cytokine expression than would an AE displayed only at
the site of inoculation. Systemic AEs included fever,
generalized rash and lymphadenopathy. Specifically, fever
was defined as an oral temperature of >38.3 °C. General-
ized rash was defined as skin eruptions on non-contiguous
areas in reference to the site of vaccination. Detailed
descriptions of the acneiform rashes considered in this
study have been described.’? Lymphadenopathy was
defined as enlargement or tenderness of regional lymph
nodes attributed to vaccination. For subjects on which both
genetic and proteomic data were gathered, 16 subjects
experienced a systemic AE and 45 subjects did not
experience an AE.

Identification of genetic polymorphisms

The custom SNP panel used in this study was based on
the NCI SNP500 Cancer project'® and has been described
earlier.’* The majority of SNPs included on the panel
target soluble factor mediators and signaling pathways,
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many of which have immunological significance.
Genotyping for SNPs was performed using DNA
amplified directly from Epstein-Barr virus-transformed
B cells generated from peripheral blood samples col-
lected from each subject. Genotyping was performed at
the Core Genotyping Facility of the National Cancer
Institute (NCI, Gaithersburg, MD, USA). Genotypes were
generated using the Illumina GoldenGate assay
technology. Of the 1536 SNPs assayed, a total of
1442 genotypes passed standard quality control filters.
In Reif et al.,'> the complete list of SNPs analyzed is
available.

Quantification of serum cytokine levels

Serum samples were obtained just prior to vaccination
(baseline) and 6-9 days after vaccination (acute), as
described earlier in detail.” Serum samples were col-
lected in 5ml Vacutainer serum separator tubes (Becton
Dickinson, San Jose, CA, USA) and were centrifuged at
700 x g for 10min. The serum then was collected,
aliquoted into cryovials (Sarstedt Inc., Numbrecht,
Germany) and stored at —80°C until assayed. Cytokine
concentrations were determined using rolling circle
amplification technology-enhanced custom dual anti-
body sandwich immunoassay arrays, as described.'*"*
The expression levels of 108 protein analytes were
measured in 100pl serum aliquots from the patient
samples. Glass slides held 12 replicate spots of mono-
clonal capture antibodies specific for each analyte.
Duplicate samples of sera were incubated for 2 h, washed
and then incubated with secondary biotinylated poly-
clonal antibodies. The ‘rolling circle’ method was then
used to amplify signals.'” Quality control measures were
used to optimize antibody pairs, minimize array-to-array
variation and standardize procedures of chip manufac-
turing.'” A Tecan L5200 unit was used to scan arrays and
customized software was used to determine mean
fluorescence intensities. In addition, 15 serial dilutions
of recombinant analytes at known concentrations (stu-
died in parallel on each slide) were used to develop best-
fit equations for each analyte, and the upper and lower
limits of quantitation were defined. Changes in serum
cytokine concentrations were calculated as percent
change from the subject’s baseline value because of the
broad individual range of systemic cytokine expression
before and after immunization.

Random Forests
An RF is a collection of decision tree classifiers,
where each tree in the forest has been trained using a
bootstrap sample of individuals from the data, and
each split attribute in the tree is chosen from among
a random subset of attributes. Classification of
individuals is on the basis of aggregate voting over all
trees in the forest.

Each tree in the forest was constructed as follows from
data having N=61 individuals and M =1552 explana-
tory (genetic plus proteomic) attributes:

(1) The method chose a training sample by selecting
N individuals, with replacement, from the entire data
set.

(2) At each node in the tree, m attributes were selected
randomly from the entire set of M attributes in the
data. The absolute magnitude of m was a function of
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the number of attributes in the data set and remained
constant throughout the forest-building process.
(3) The method chose the best split at the current node
from among the subset of m attributes selected above.
(4) We iterated the second and third steps until the tree
was fully grown (no pruning).

Repetition of this algorithm yielded a forest of trees, each
of which had been trained on bootstrap samples of
individuals (see Figure 1). Thus, for a given tree, certain
individuals were left out during training. Prediction
error and attribute importance were estimated from
these ‘out-of-bag’ individuals.

The out-of-bag (unseen) individuals were used to
estimate the importance of particular attributes accord-
ing to the following logic: If randomly permuting values
of a particular attribute did not affect the predictive
ability of trees on out-of-bag samples, then that attribute
was assigned a low importance score. If, however,
randomly permuting the values of a particular attribute
drastically impaired the ability of trees to correctly
predict the class of out-of-bag samples, then the
importance score of that attribute was high. By running
out-of-bag samples down entire trees during the permu-
tation procedure, attribute interactions were taken into
account when calculating importance scores, as class was
assigned in the context of other attribute nodes in the
tree.

The recursive partitioning trees comprising an RF
provide an explicit representation of attribute interaction
that is readily applicable to the study of interactions
among multiple data types.?®?’ These models may
uncover interactions among genes, proteins and/or
environmental factors that do not exhibit strong marginal
effects. In addition, tree methods are suited to dealing
with certain types of genetic heterogeneity, as splits near
the root node define separate model subsets in the data.
RFs capitalize on the solid benefits of decision trees and
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Figure1 Construction of individual trees using the Random Forest
method from a full data set of N individuals and M attributes.
Proceeding from the root node, individual subjects were classified
into terminal AE status leaves according to the value of that
individual’s genetic or proteomic attribute at each node. The steps
correspond to those described in the text.




have demonstrated excellent predictive performance
when the forest is diverse (that is, trees are not highly
correlated with each other) and composed of individu-
ally strong classifier trees.>** The RF method is a natural
approach for studying gene-gene, gene-protein or
protein—protein interactions because importance scores
for particular attributes take interactions into account
without demanding a pre-specified model.*

Decision trees

To represent the interactions among genetic and/or
proteomic attributes associated with AEs, decision trees
were chosen to build the final model because of their
ready interpretability and explicit modeling of attribute
interactions. The tree classified individual subjects into
AE groups by proceeding down a dichotomous tree,
where the genetic or proteomic attribute at each node (or
split) was selected for the gain in information it
provided. Gain in information was attributed when
knowledge about the variation in this attribute separated
subjects into appropriate AE classes. When interpreting
the tree, attributes at each node were taken in the context
of attributes at nodes closer to the root—thus allowing an
explicit representation of attribute interactions. To aug-
ment the generalizability of our final model, we
stipulated that at least five subjects must appear in each
terminal (status) leaf and used 10-fold cross-validation
(CV) to estimate the predictive ability of the final model.
Although CV accuracy was reduced by allowing trees
with less than five subjects in terminal nodes, CV
accuracy proved to be insensitive to changes in other
tree parameters for these data. We used the implementa-
tion of the C4.5 decision-tree algorithm provided in the
Weka machine learning software package to obtain our
final model.**

Data analysis strategy
RF analysis was performed using the freely available R
package randomForest.?>2° This package is based on the
original Fortran code available at the website cited in
Breiman and Cutler.” RF was used to analyze data sets
containing each biological data type separately and in
parallel, resulting in two stratified data sets (genetic only;
proteomic only) and a combined data set (both genetic
and proteomic attributes). Genetic attributes were treated
as categorical, whereas proteomic attributes were treated
as continuous values. For each genetic, proteomic, or
combined data set, forests comprised of 10 000 trees were
grown. Attribute importance was calculated using the
out-of-bag permutation test described above. The relative
importance (rank) of functional genetic attributes and
related proteomic attributes was determined from the
mean decrease in the Gini index using the out-of-bag
permutation testing procedure. The relative importance
determined from the mean decrease in classification
accuracy produced nearly identical results both here and
in extensive simulation studies.?®

The simulation studies®® used the current data as the
basis for a range of simulated models, providing
guidance for the parameters in the analysis discussed
here. The relative rank of simulated genetic and
proteomic predictors was evaluated for a range of filter
cutoffs and on both stratified and combined data sets.
Results from these data-based simulation studies demon-
strated high confidence that AE-associated attributes
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having relatively meager effects would be ranked in the
top 10% of attributes in RF analysis, and that analysis of
the combined (genetic and proteomic) data was generally
advantageous. Therefore, we chose the top 10% of
attributes as ranked by RF as candidates for inclusion
in our final model. To represent the interactions among
genetic and/or proteomic attributes associated with AEs,
we built a decision tree model.

Biological interpretation of our final model was aided
by Chilibot (chip literature robot) knowledge mining
software.?® Chilibot inferred relationship networks
among the attributes in the final model based on
linguistic analysis of relevant records from public
biomedical literature databases. The natural language
processing approach used by Chilibot is superior to
standard co-occurrence text mining approaches because
parsing text into sentences can characterize the type of
relationship (for example, inhibition or stimulation)
between input terms. The terms given explicitly to
Chilibot as input were ICAM-1, ‘IL-10,/ ‘IL-4’ and
‘CSF-3, as well as the alternate gene names ‘CD54" and
‘G-CSF’ (for ICAM-1 and CSF-3, respectively). The
software automatically adds syntactic synonyms (for
example, “IL 10, “IL-10,” ‘IL10,” and so on) to the search
criteria. Because the goal of this study is hypothesis
generation, as opposed to strict hypothesis testing,
Chilibot was used to aid in discovery rather than using
any pre-defined network relationships.

Results

Filtering of important attributes using RFs

Supplementary Table 1 lists all attributes having an
importance rank in the top 10% relative to all attributes
in the combined data set. Figure 2 depicts the attribute
importance score landscape over the entire data set. This
landscape proved robust to changes in RF parameters,
provided that a sufficiently large forest (10 000 trees) was
grown. RF identified both genetic and proteomic
attributes as important discriminators of AE status.
Approximately one-third of the attributes identified as
important were genetic, with the remaining two-thirds
being proteomic. Although this distribution among data

Importance scores for all attributes

_’n—“"ﬂ-‘f omo® ONCO0A O OO -

Percentile rank

(Y —

High
Attribute importance

Figure 2 Attribute importance ‘landscape’ showing the shape of
the importance curve ranking all attributes in the combined (genetic
plus proteomic) data set. Attributes above the horizontal line
indicate a relative importance rank in the top 10% (90th percentile)
of all attributes in the data set.
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types may reflect systematic patterns concerning the
etiology of AE outcomes, the bias toward proteomic
attributes probably arose out of the fact that the cytokine
array was specifically designed to capture variation in
important systemic mediators. In contrast, the genetic
data include candidate SNPs in and around genes having
a variety of immunological functions. In addition, with
multiple SNPs per gene, correlation existing among
polymorphisms (that is, haplotypes) could drive down
RF importance scores for particular SNPs, as RF might
select any SNP from within a haplotype at a particular
node. Indeed, the IL4 SNP in our final model was part of
a group of four SNPs in IL4 having nearly identical
importance scores, and Haploview analysis showed
them to be in high linkage disequilibrium, providing
evidence that these genetic polymorphisms are inherited
as a haplotype.*® In this context, linkage disequilibrium
has an impact akin to etiological heterogeneity, which is a
concern in any association study. The heterogeneity
concern is part of the rationale for using RF as a first-
stage filter that identifies a handful (the top 10%) of
attributes for further consideration. The effect of
repeated samplings over many thousands of trees gives
all attributes an unbiased opportunity to demonstrate AE
association, even if importance scores for groups of SNPs
in linkage disequilibrium are slightly tamped down.
Thus, attributes whose importance scores may be
tamped down by phenomena such as linkage disequili-
brium still have a chance to surpass our 10% importance
threshold over a sufficiently large forest of resampled
trees, whereas slightly down-weighted importance
scores may push interesting attributes below an overly
strict first-stage threshold in a smaller forest. Consider-
ing the RF importance rank of attributes included in our
final model relative to all attributes in the combined data
set, all three proteomic attributes were ranked in the top
1%, and the IL4 SNP (rs 2243290) was ranked in the top
5%. Relative to their respective data types, the IL4 SNP
was ranked in the top 1% among all attributes in the
genetic data set, and ICAM-1, CSF-3 and IL-10 were
ranked in the top 1% among all proteomic attributes.

Modeling the association of genetic and proteomic biomarkers
with AEs

Having filtered out the noise using RFs, we used a
decision tree representation to explore interactions
among the attributes in our filtered list related to AE
status. The final decision tree model is shown in Figure 3.
Our final model included four variables—three proteo-
mic attributes and one genetic attribute. Change in
ICAM-1 concentration comprises the root node of the
tree, with subsequent nodes composed of change in IL-10
concentration, a SNP in IL4, and change in CSF-3
concentration. Imposing our minimum of five indivi-
duals per terminal (AE status) leaf, this tree correctly
classified 89% of individuals (with seven misclassifica-
tions) in the full data set and achieved a 10-fold CV
(prediction) accuracy of 75%.

Figure 4 characterizes the biological relationships
among the attributes in the tree using Chilibot. Inter-
active relationships were characterized into one of three
types based on the verbs connecting pairs of attributes in
the biomedical literature as follows: (1) Stimulatory
relationships were connected by verbs such as ‘activate,
‘stimulate’ or ‘enhance.” (2) Inhibitory relationships were
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Figure 3 Final model of genetic and proteomic factors contributing
to AE development. Each node (oval) constitutes a decision point
based on the genotype of genetic attributes (IL4 SNP) or whether the
concentration change from baseline in proteomic attributes ICAM-
1, IL-10 and CSF-3) was above (upward-pointing arrows) or below
(downward-facing arrows) a calculated threshold. Starting at the
root node (ICAM-1), subjects were classified into AE status leaves
(rectangles) by proceeding along the decision points at each
attribute node. Given below each terminal leaf is the total number
of subjects classified into that AE status group/the number of
subjects incorrectly assigned to that AE status group.
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Figure 4 Biological relationships among the attributes in our final
model characterized using Chilibot. Connections between each
attribute node (oval) are denoted according to the type of interactive
relationship they represent: stimulatory (solid), both stimulatory
and inhibitory (dotted) or neutral (dashed). Arrowheads indicate
that interactions between particular biological attributes are bi-
directional.

connected by verbs such as ‘decrease,’ ‘attenuate’ or
‘inhibit.” (3) Neutral relationships were assigned when
the nature of the relationship could not be determined
contextually. Mining the biomedical literature suggested
interactive relationships connecting all of the attribute
nodes in our final model. Stimulatory, inhibitory or
neutral pair-wise interactive relationships were identi-
fied between each of ICAM-1, IL-10, II4 and CSEF-3.



Thorough examination of the networks inferred facili-
tated the biological interpretation of the final model
discussed below.

Discussion

Our final model provides an immunologically plausible
and testable biological mechanism of AE occurrence after
smallpox vaccination that includes both genetic and
proteomic factors. The analytical strategy used is appro-
priate for the study of complex phenotypes, as outcomes
such as AE development likely result from the interplay
of multiple genetic, proteomic and environmental fac-
tors.®?> The decision tree trained on the attributes
passing our RF filter proposes a solid biological model
of AE development.

The attributes included in this tree point to an
important role of one particular immune cell type: is
monocytes. Monocytes are bone marrow-derived circu-
lating blood cells that are precursors of tissue macro-
phages. Monocytes are recruited actively to the sites of
inflammation, where they differentiate into macrophages
in tissues. These macrophages play important roles in
coordinating both innate and adaptive immune re-
sponses. Macrophages are activated by microbial pro-
ducts such as endotoxin and by T-cell cytokines such as
interferon-y. Activated macrophages phagocytose and
kill microorganisms, secrete pro-inflammatory cytokines
and present antigens to helper T cells.

The root node of the tree we developed is ICAM-1
(CD54), where small changes from baseline concentra-
tion (<11%) of ICAM-1 predict a non-AE response to
vaccination and high changes from baseline concentra-
tion (>11%) point toward AE risk, depending on factors
in subsequent nodes. ICAM-1 is mainly expressed on
endothelial cells, T cells, B cells and monocytes. It
functions in cell-cell adhesion, which plays a crucial
role in monocyte differentiation into macrophages, as
entry into tissues is necessary. In addition, ICAM-1
expression is upregulated in mature monocytes,* aiding
in cell adhesion and the eventual differentiation into
macrophages. Circulating monocytes are in random
contact with endothelial cells, and the adhesion molecule
E-selectin slows the monocyte by inducing rolling of the
monocyte along the endothelial surface before firm
attachment to vascular cell adhesion molecule 1 or
ICAM-1, which interact with integrins on the monocyte
surface. Once the monocyte is tightly bound, it then
migrates between endothelial cells.**** Excessive levels
of ICAM-1 might cause an ‘over-recruitment’ of mono-
cytes into tissue, triggering an unnecessarily active
innate inflammatory response.

For individuals with large changes in ICAM-1, the next
node in the tree is IL-10, where changes from baseline
>85% are associated with AEs. IL-10 is produced by
activated macrophages and some helper T cells for which
a major function is to inhibit activated macrophages and,
therefore, to maintain homeostatic control of innate and
cell-mediated immune reactions. Changes in IL-10 levels
may indicate an imbalance in this delicate homeostasis,
leading to AEs.

For individuals with mild changes in IL-10 concentra-
tion, the next node is an SNP in the gene encoding IL-4.
In an earlier genetic study of two vaccination cohorts
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(including a subset of individuals in the present data),
this same IL-4 polymorphism was associated with AEs
(P=0.05 and P=0.06 in the first and second cohort,
respectively).'”® Interestingly, by including proteomic
factors in this study, our model indicates that the AE
risk conferred by this SNP is dependent on proteomic
context. IL-4 is a cytokine produced mainly by the TH,
subset of CD4 " helper T cells, whose functions include
the induction of the differentiation of TH, cells from
naive CD4 * precursors, stimulation of IgE production by
B cells and suppression of interferon-y-dependent
macrophage functions.®>** Although direct functional
significance of the SNP is unknown, it is reasonable that
the different genotypes could result in functionally
different versions of the IL-4 protein or in different
bioavailability levels of IL-4. The fact that multiple SNPs
in IL4 achieved nearly identical importance scores
indicates that variation within the IL4 gene region may
be related functionally to the development of AEs.
Because of the intricate cross-talk between macrophages
and the TH, response in maintaining homeostasis, it is
plausible that the major IL4 genotype (CC) is associated
with calming the activated macrophage response and
directing the acquired immune system to progress in
response to vaccine presentation, whereas the variant
genotypes (AC or AA) fail to calm the innate response,
presenting increased AE risk.

For individuals having one of the variant genotypes at
114, the lowest node of the tree is CSF-3 (G-CSF). G-CSF
is a cytokine produced by activated T cells, macrophages
and endothelial cells at the sites of infection, which acts
on the bone marrow to mobilize and increase the
production of neutrophils to replace those consumed in
inflammatory reactions. In our model, increased levels of
CSF-3 after vaccination (change >78%) indicated in-
creased risk of suffering an AE. This finding implies
another possible over-recruitment event in the develop-
ment of AEs, as neutrophils have been associated with
host tissue damage and failure to terminate acute
inflammatory responses.® This reaction is consistent
with the types of AE symptoms observed in this study
and with the overall proposed biological mechanisms of
AE development.

The results of this study provide a viable biological
hypothesis of AE occurrence after smallpox vaccination
that is experimentally testable. Our model includes both
genetic and proteomic biomarkers. Allowing for such an
integrative model is an important strength of our
analytical strategy. It is increasingly recognized that the
pathophysiology of complex clinical outcomes hinges on
biological factors acting on multiple levels.** Therefore,
the formulation of robust etiological models must take
this inherent complexity into account and capitalize on
the power of modern experimental data-generating
techniques.

We conclude that AEs after smallpox vaccination result
from hyperactivation of inflammatory signals, leading to
excess recruitment and stimulation of monocytes in
peripheral tissues. Our analysis identifies a set of
interacting genetic and proteomic candidates associated
with AEs, such as ICAM-1, IL-10, IL4 and CSF-3. As the
proteomic measurements occurred early in the period
after vaccination, before most AEs presented themselves
clinically, our model could be used as a diagnostic tool in
the prediction of AEs. Of course, the ultimate goal of
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such a study is the identification and characterization of
biological risk factors contributing to the inappropriate
immune response to vaccination. We present a hypo-
thesized mechanism of AE development that targets
specific elements of systemic inflammatory pathways for
further study.

Future studies should further evaluate the reproduci-
bility of the current model, given that the number of
vaccinated subjects meeting the criteria for inclusion and
having both genetic and proteomic data was relatively
small. Ideally, our model would be evaluated for
replication in an entirely independent sample. However,
the validity of our current model can be assessed through
the statistical process of internal CV (where our model
achieved a 75% prediction accuracy) and through
comparison of these results with our earlier studies of
genetic'® or proteomic® data alone. In this study, our RF
approach with the combined data identified all attributes
highlighted in the earlier proteomic study® (ICAM-1,
CSF-3, Eotaxin and TIMP-2) and two of the three genes
highlighted in the earlier genetic study'> (MTHFR and
IL4 but not IRF1). Although the IRFI1 polymorphisms
were not ranked in the top 10% of all attribute
importance scores in the combined data set, these
attributes would have passed the top 10% filter criteria
relative to only genetic attributes. Given that the subset
of subjects used in this study (that is, those having both
genetic and proteomic data) has only partial overlap
with subjects in either of the earlier studies, we feel that
the current results are remarkably stable.

Finally, our hypothesized model must be tested at the
bench. The functional consequences of genetic variability
in IL4 should be characterized fully. Time series studies
with dense measurement points are needed to shed light
on the dynamic interplay between the signaling of
ICAM-1, IL-10 and CSF-3. Additional data are needed
on the effects of these cytokines in other physiological
compartments. Careful assessment of external factors
(such as nutrition, fitness and relevant environmental
exposures) influencing protein expression should be
considered in future studies. The results from this study
suggest that analysis of the molecular and cellular basis
of complex clinical phenomena will require an experi-
mental approach that takes into account the broader
spatial and temporal physiological context of complex
biological systems.

Acknowledgements

This work was supported by the National Institutes of
Health (NIH)/National Institute of Allergy and Infec-
tious Diseases (NIAID) Vaccine Trials and Evaluation
Unit (contract N01-AI-25462, study DMID 02-054); NIH/
NIAID (Grants R21-AI-59365, K25-AI-064625 and RO1-
AI-59694) and NIH/National Institute of General Med-
ical Sciences (NIGMS) (Grant R01-GM-2758). Cytokine
analysis was a kind gift of Stephen Kingsmore, PhD, and
Molecular Staging Incorporated. Genotype analysis was
a kind gift of Stephen Chanock, MD, and the NCI Center
for Cancer Research. Kathryn Edwards, MD, coordinated
the original acquisition of the data analyzed for this
study. The United States Environmental Protection
Agency (EPA), through its Office of Research and

Genes and Immunity

Development, collaborated in the research described
here. It has been subjected to Agency review and
approved for publication, although it does not necessa-
rily represent the views or polices of the US EPA.

References

1 Kemper AR, Davis MM, Freed GL. Expected adverse events in a
mass smallpox vaccination campaign. Eff Clin Pract 2002; 5: 84-90.

2 Reif DM, White BC, Moore JH. Integrated analysis of genetic,
genomic and proteomic data. Expert Rev Proteomics 2004; 1:
67-75.

3 Maniolo TA, Collins FS. Genes, environment, health, and
disease: facing up to complexity. Hum Hered 2007; 63: 63-66.

4 Nicholson JK. Global systems biology, personalized medicine
and molecular epidemiology. Mol Syst Biol 2006; 3: 1-6.

5 Breiman L. Random forests. Mach Learn 2001; 45: 5-32.

6 Lunetta KL, Hayward LB, Segal J, Van EP. Screening large-
scale association study data: exploiting interactions using
random forests. BMC Genet 2004; 5: 32.

7 Robnik-Sikonja M. Improving random forests. Proc Eur Conf
Mach Learn 2004; 3201: 359-370.

8 McKinney BA, Reif DM, Rock MT, Edwards KM, Kingsmore
SF, Moore JH et al. Cytokine expression patterns associated
with systemic adverse events following smallpox immuniza-
tion. J Infect Dis 2006; 194: 444-453.

9 Rock MT, Yoder SM, Talbot TR, Edwards KM, Crowe Jr JE.
Adverse events after smallpox immunizations are associated
with alterations in systemic cytokine levels. | Infect Dis 2004;
189: 1401-1410.

10 Rock MT, Yoder SM, Talbot TR, Edwards KM, Crowe Jr JE.
Cellular immune responses to diluted and undiluted Aventis
Pasteur smallpox vaccine. | Infect Dis 2006; 194: 435—443.

11 Talbot TR, Stapleton JT, Brady RC, Winokur PL, Bernstein DI,
Germanson T et al. Vaccination success rate and reaction
profile with diluted and undiluted smallpox vaccine: a
randomized controlled trial. JAMA 2004; 292: 1205-1212.

12 Talbot TR, Bredenberg HK, Smith M, LaFleur BJ, Boyd A,
Edwards KM. Focal and generalized folliculitis following
smallpox vaccination among vaccinia-naive recipients. JAMA
2003; 289: 3290-3294.

13 Garcia-Closas M, Malats N, Real FX, Yeager M, Welch R,
Silverman D et al. Large-scale evaluation of candidate genes
identifies associations between VEGF polymorphisms and
bladder cancer risk. PLoS Genet 2007; 3: €29.

14 Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L et al.
SNP500Cancer: a public resource for sequence validation, assay
development, and frequency analysis for genetic variation in
candidate genes. Nucleic Acids Res 2006; 34: D617-D621.

15 Reif DM, McKinney BA, Motsinger-Reif AA, Chanock 5],
Edwards KM, Rock MT et al. Genetic basis for adverse events
after smallpox vaccination. | Infect Dis 2008; 198: 16-22.

16 Kader HA, Tchernev VT, Satyaraj E, Lejnine S, Kotler G,
Kingsmore SF et al. Protein microarray analysis of disease
activity in pediatric inflammatory bowel disease demonstrates
elevated serum PLGEF, IL-7, TGF-betal, and IL-12p40 levels in
Crohn’s disease and ulcerative colitis patients in remission
versus active disease. Am | Gastroenterol 2005; 100: 414-423.

17 Perlee L, Christiansen J, Dondero R, Grimwade B, Lejnine S,
Mullenix M et al. Development and standardization of
multiplexed antibody microarrays for use in quantitative
proteomics. Proteome Sci 2004; 2: 9.

18 Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K,
Zhu Z et al. Inaugural article: immunoassays with rolling circle
DNA amplification: a versatile platform for ultrasensitive
antigen detection. Proc Natl Acad Sci USA 2000; 97: 10113-10119.

19 Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q
et al. Multiplexed protein profiling on microarrays by rolling-
circle amplification. Nat Biotechnol 2002; 20: 359-365.



20

21

22

23

24

25

26

27

28

29

30

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification
and Regression Trees. Chapman & Hall: New York, 1984.
Province MA, Shannon WD, Rao DC. Classification methods
for confronting heterogeneity. Adv Genet 2001; 42: 273-286.
Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP
et al. Identifying SNPs predictive of phenotype using random
forests. Genet Epidemiol 2005; 28: 171-182.

McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine
learning for detecting gene-gene interactions: a review. Appl
Bioinformatics 2006; 5: 77-88.

Witten IH, Frank E. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd edn. Morgan Kaufmann: San
Francisco, 2005.

Ihaka R, Gentleman R. R: a language for data analysis and
graphics. | Comput Graph Stat 1996; 5: 299-314.

R Development Core Team. R: a language and environment
for statistical computing. R foundation for statistical comput-
ing. Available at http: / www.R-project.org, 2006.

Breiman L, Cutler A. Random forests. Available at http://
www.stat.berkeley.edu/ ~ breiman/RandomForests/cc_home.
htm, 2004.

Reif DM, Motsinger AA, McKinney BA, Crowe Jr JE, Moore JH.
Feature selection using a random forests classifier for the
integrated analysis of multiple data types. In: Proceedings of the
IEEE Symposium on Computational Intelligence in Bioinformatics
and Computational Biology, 2006, pp 171-178.

Chen H, Sharp BM. Content-rich biological network con-
structed by mining PubMed abstracts. BMC Bioinformatics
2004; 8: 5-147.

Barrett JC, Fry B, Maller ], Daly M]. Haploview: analysis and
visualization of LD and haplotype maps. Bioinformatics 2005;
21: 263-265.

Integrated analysis of smallpox vaccination data
DM Reif et al

31

32

33

34

35

36

37

38

39

40

Moore JH. The ubiquitous nature of epistasis in determining
susceptibility to common human diseases. Hum Hered 2003;
56: 73-82.

Wilke RA, Reif DM, Moore JH. Combinatorial pharmacoge-
netics. Nat Rev Drug Discov 2005; 4: 911-918.

Most J, Schwaeble W, Drach ], Sommerauer A, Dierich MP.
Regulation of the expression of ICAM-1 on human mono-
cytes and monocytic tumor cell lines. | Immunol 1992; 148:
1635-1642.

Peters W, Charo IF. Involvement of chemokine receptor 2 and
its ligand, monocyte chemoattractant protein-1, in the devel-
opment of atherosclerosis: lessons from knockout mice. Curr
Opin Lipidol 2001; 12: 175-180.

Zittermann SI, Issekutz AC. Basic fibroblast growth factor
(bFGEF, FGF-2) potentiates leukocyte recruitment to inflamma-
tion by enhancing endothelial adhesion molecule expression.
Am | Pathol 2006; 168: 835-846.

Eslick J, Scatizzi JC, Albee L, Bickel E, Bradley K, Perlman H.
IL-4 and IL-10 inhibition of spontaneous monocyte apoptosis
is associated with Flip upregulation. Inflammation 2004; 28:
139-145.

Mangan DF, Robertson B, Wahl SM. IL-4 enhances
programmed cell death (apoptosis) in stimulated human
monocytes. | Immunol 1992; 148: 1812-1816.

Soruri A, Kiafard Z, Dettmer C, Riggert J, Kohl J, Zwirner J. IL-
4 down-regulates anaphylatoxin receptors in monocytes and
dendritic cells and impairs anaphylatoxin-induced migration
in vivo. | Immunol 2003; 170: 3306-3314.

Serhan CN, Savill J. Resolution of inflammation: the beginning
programs the end. Nat Immunol 2005; 6: 1191-1197.

Hood L. Systems biology: integrating technology, biology, and
computation. Mech Ageing Dev 2003; 124: 9-16.

Supplementary Information accompanies the paper on Genes and Immunity website (http:/ /www.nature.com/gene)

119

Genes and Immunity


http://www.R-project.org
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.nature.com/gene

	Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination
	Introduction
	Materials and methods
	Study subjects
	Clinical assessments
	Identification of genetic polymorphisms
	Quantification of serum cytokine levels
	Random Forests
	Decision trees
	Data analysis strategy

	Results
	Filtering of important attributes using RFs
	Modeling the association of genetic and proteomic biomarkers with AEs

	Discussion
	Acknowledgements
	Note
	References


