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Abstract

Microbial keratitis is a significant cause of
global visual impairment and blindness. Cor-
neal infection can be caused by a wide variety
of pathogens, each of which exhibits a range of
mechanisms by which the immune system is
activated. The complexity of the immune
response to corneal infection is only now
beginning to be elucidated. Crucial to the
cornea’s defences are the pattern-recognition
receptors: Toll-like and Nod-like receptors and
the subsequent activation of inflammatory
pathways. These inflammatory pathways
include the inflammasome and can lead to
significant tissue destruction and corneal
damage, with the potential for resultant
blindness. Understanding the immune
mechanisms behind this tissue destruction
may enable improved identification of thera-
peutic targets to aid development of more
specific therapies for reducing corneal damage
in infectious keratitis. This review summarises
current knowledge of pattern-recognition
receptors and their downstream pathways in
response to the major keratitis-causing organ-
isms and alludes to potential therapeutic
approaches that could alleviate corneal
blindness.
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Introduction

Corneal disease is a significant and often
underreported problem. The most recent World
Health Organization (WHO) update estimates
that 1% of global visual impairment is due to
corneal infection or inflammation.1 Of those
reported as blind, corneal opacities contribute to
4%, making it the joint fourth most common
cause of blindness worldwide; the main
aetiological factor is infectious keratitis. In some
parts of the world, corneal blindness can be
caused by keratitis in as many as 20% of adults

and 40% of children.2 Trauma caused by
agrarian activity is a major factor in its
development. Infectious keratitis in the UK
results in ~ 4000 people annually needing
hospital treatment3 and studies in the US have
shown a rise in cases associated with increasing
contact lens wear.4,5 Particularly important is the
fact that in both higher and lower income
countries corneal disease frequently affects
people of working age, causing significant
associated morbidity and visual impairment.2,6

In most parts of the world bacteria are the leading
pathogens and despite the use of antibiotics,
irreversible corneal damage still occurs.
Visual impairment in infectious keratitis

results as a consequence of (i) the interactions of
the pathogen with the host tissue, (ii) the host
innate inflammatory response, and (iii) the
therapeutic drugs used to treat the infection. The
strength of this inflammatory response and its
associated damage can vary depending on the
pathogen and the severity of infection. Attempts
are being made to better understand the
mechanisms behind pathogen recognition
and host innate immune responses with
the aim of identifying future targets for
immunomodulatory therapies. If targeted
therapies can be achieved, the inflammatory
damage and loss of vision currently caused by
corneal infection and its treatment could be
reduced, with an associated improvement in
visual outcomes and reduction in morbidity.

Pattern recognition of pathogens in the cornea

Corneal barriers against infection

The intact corneal epithelium is a formidable
barrier to bacterial penetration into deeper
layers.7 This is partly due to the tight junctions
between superficial cells and also partly due to
antibacterial peptides and innate immune
signalling.8–12 In addition, bathing tear fluid
contains mucins, secretory immunoglobulin
A (sIgA), and surfactant protein D, all
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antimicrobial factors that can bind microbes and
potentially alter their interactions with corneal epithelial
cells.13–15 Epithelial cells also express several
antimicrobial peptides, including human β-defensin 2
(hBD-2), cathelicidin LL-37,11,12,16,17 and cytokeratin 6A.18

In addition, superficial epithelial cells can internalise
bacteria and then desquamate, thereby reducing the
infective load.19 Despite these defences, if microorganisms
succeed in traversing the multilayered corneal epithelium,
the epithelial basement membrane still presents a
formidable barrier to further penetration. This is due to
physical filtration via its pores that are smaller than the
size of most bacteria,20 or by improving the barrier
function of the epithelial cells growing on top of them.21

Penetration of bacteria to the stroma typically requires a
breach in the corneal epithelium, either by mechanical
trauma such as epithelial abrasions, or by intrastromal
inoculation, as happens in animal models of microbial
keratitis, in which pathogens are either inoculated onto a
scarified corneal surface or injected intrastromally.22

Similar mechanisms may also be involved in fungal and
protozoan infections. In some cases of extended contact
lens wear however, infection and penetration can happen
without an epithelial breach. This might be due to biofilm
formation on the contact lens surfaces where residing
bacteria are exposed only to sublethal concentrations of
host antimicrobials and other defence factors, thereby
enabling bacteria to adapt and overcome them.7

Corneal epithelial barriers to infection therefore consist
of defences against adhesion and traversal. This likely
involves junctional complexes, secreted and internal
antimicrobial peptides, mucins, and the basal lamina
foundation that provides a physical barrier while also
supporting epithelial homeostasis. During and after
microbial challenge, corneal epithelial defences are
enhanced and regulated by epithelial derived cytokines
and chemokines that can facilitate communication with
cells of the immune system to further enhance corneal
defences.

Innate immune cells in the mammalian cornea

A wide range of pathogenic organisms can infect the
cornea, with varying mechanisms of infection and
virulence (see Table 1). Although under normal
circumstances the eye exhibits a certain amount of
immune privilege, the cornea nonetheless must have a
means of detecting and combating these pathogens.
Recent work has identified that immune cells including

macrophages and dendritic cells have key roles in
detecting and initiating the innate immune response in
the cornea, expressing pattern-recognition receptors
(PRRs) such as Toll-like receptors (TLRs) and NOD-like

receptors (nucleotide-binding oligomerisation domains;
NLRs). PRRs recognise invariant pathogen structures
known as pathogen-associated molecular patterns
(PAMPs). TLRs were discovered in human immune cell
lines in the late 1990s38 and it was noted that activation of
these receptors in humans produced a cascade of
inflammatory cytokines such as IL-1, IL-6, and IL-8 via
NF-kB. To date, 10 of these TLR molecules have been
identified in humans, each of them recognising
specifically conserved regions of pathogens or their
products. Recognition of these conserved domains
induces a signalling pathway resulting in a pro-
inflammatory response, with resultant tissue damage and
the potential for sight loss. Table 2 summarises the major
domains that are recognised by each member of the TLR
family. NLRs are discussed in the context of
inflammasomes below.

Early attempts to identify the presence of myeloid-
derived cells in the cornea concluded that Langerhans
cells (LCs) were present in the peripheral third of the
human corneal epithelium43–45 but that antigen-
presenting cells and other bone marrow-derived lineages
were largely absent from the central cornea. This led to
the belief that the cornea was an immune-privileged
structure, such that when its regulatory mechanisms
appeared to break down it was thought to be due to
external factors such as corneal grafting.46–48 However,
resident corneal macrophage populations have been
observed in murine and human cornea.47,49,50 A picture
now emerges of a stratified resident myeloid population
in the human cornea, with major histocompatibility
complex (MHC) II+/CD45+ bone marrow-derived cells
present throughout all layers of the peripheral stroma, as
well as in the anterior stroma of the central cornea.51

Classification of cell surface markers has enabled cell
lineage identification: myeloid-derived dendritic cells
(DCs) are considered CD11c+, while monocyte-derived
lineages, including LCs, are CD14+.52

Hamrah et al53 observed that some murine DCs in the
periphery of the anterior stroma also express MHC II,
CD80, and CD86, but the DCs located in the centre
present an immature, MHC II−CD80−CD86− phenotype
until inflammation is induced. Work by Knickelbein et al49

in humans has identified that CD11c+ DCs are present in
the basal epithelium and anterior peripheral stroma.
LCs appear to be predominantly confined to the basal
epithelial layer of the peripheral cornea with a very few
cells present in the peripheral stroma. Macrophages have
been found to be largely present in the anterior stroma.
The presence of these bone marrow-derived cells in the
cornea has proved crucial to elucidating the immune
response of the cornea to infection.
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Table 1 Pathogens causing corneal disease. Pathogens within each class of microorganism are listed in descending order of
prevalence23–37

Bacterial Gram-positive Gram-negative

Staphylococcus spp (aureus, epidermidis) Pseudomonas aeruginosa
Streptococcus pneumoniae Moraxella spp
Streptococcus pyogenes Klebsiella pneumoniae
Streptococcus viridans Enterobacter aerogenes
Corynbacterium diphtheroides Serratia spp (marcescens, liquefaciens)
Nocardia spp Acinetobacter spp
Propionibacteria acnes Enterococcus spp
Bacillus spp Burkholderia cepacia
Mycobacterium spp Escherichia coli
Micrococcus spp Stenotrophomonas maltophilia

Neisseria gonorrhoeae
Haemophilus spp
Kingella kingae
Pseudomonas spp (non-aeruginosa)
Citrobacter spp
Aeromonas spp

Chlamydial C trachomatis, psittaci

Fungal Fusarium spp
Aspergillus spp (flavus, fumigatus, niger, terreus and nidulans)
Alternaria spp
Cuvularia spp
Lasiodiplodia theobromae
Paecilomyces spp
Penicillium spp
Scedosporium apiospermum
Cephaliophora irregularis
Cladosporium cladosporoides
Cylindrocarpon spp
Exserohilum rostratum
Bipolaris spp
Candida spp
Pythium insidiosum

Viral Herpes simplex virus type 1
Varicella zoster virus
Human adenovirus (serotypes 8, 19, and 37)
Enterovirus type 70
Coxsackievirus type 24
Echovirus type 13
Poliovirus type 3
Cytomegalovirus

Parasitic Acanthamoeba spp (castellani, polyphaga and culbertsoni)
Microsporidia spp
Hartmannella spp
Vahlkampfia spp
Dictyostelium polycephalum
Phthriasis palpebrarum
Oestrus ovis

Nematodal Loa loa
Onchocerca volvulus
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Intracellular Nod-like receptors and inflammasome
activation after pathogen recognition

The concept of the inflammasome was coined in 200254

and rapidly generated intense study, adding a new
dimension to scientific understanding of inflammation
and innate immunity. NLRs are intracellular PRRs
expressed within immune cells that sense invading
microorganisms and initiate the innate immune response.
Phylogenetic studies propose three NLR subfamilies
based on a structural nucleotide-binding domain present
in these receptors: (1) the NOD (nucleotide-binding
oligomerisation domain); (2) the NLRP (pyrin domain;
PYD); and (3) the NLRC (caspase-associated recruitment
domain, CARD), also known as IPAF.55

In response to intracellular PAMPs, some NLRs induce
the assembly of multiprotein complexes named
inflammasomes that serve as platforms for caspase
activation and, consequently, maturation of the
pro-inflammatory mediators IL-1ß and IL-18. This
inflammatory response is called pyroptosis. The
multiprotein scaffold is commonly described as either a
‘canonical’ or a ‘non-canonical’ inflammasome. The
canonical inflammasome describes the inflammasome
platform containing NLRP3, the ASC adaptor protein
required to recruit the pro-caspase-1 (CASP1), and the
caspases 1 or 11. The canonical inflammasome is the most
studied and well characterized. A non-canonical
inflammasome is used to refer to any other
inflammasome complex containing molecules other than
those mentioned above.55–57

To date, two inflammasomes have been identified as
assembling on the corneal surface in response to an
infectious agent: the NLRP3 and NLRC4 inflammasomes.
In contrast to NLRC4, the canonical NLRP3 is not
constitutively expressed within the cell and requires TLR
activation to induce its transcription via the NF-kB
pathway.58 The stimulation of NLRP3 and NLRC4
inflammasomes leads to the activation of caspase-1, a
cysteine protease responsible for the cleavage and release
of pro-IL-18 and pro-IL-1β. NLRC4 requires accessory
proteins called Naips for its stimulation, but does not
require recruitment of the ASC molecule for caspase-1
activation. However, association with ASC enhances the
assembly of the inflammasome and maturation of the
pro-inflammatory cytokines.59,60 NLRC4 is also able to
activate caspase-11 for pro-IL-18 and pro-IL-1β
processing.61 In addition, Meunier et al62 recently
described the requirement for small GTPases known as
guanylate-binding proteins to be present for the complete
stimulation of caspase-11. Figure 1. illustrates the major
components of the inflammasome pathway.
Aspergillus fumigatus, a fungal mould, is known to

stimulate the NLRP3 inflammasome and to induce
maturation of pro-IL-1β to IL-1β,63 and both NLRP3 and
IL-1β expression were found to be increased in humans
suffering from fungal keratitis infection.64 Pseudomonas
aeruginosa in mice is able to activate the NLRC4
inflammasome via immune cell internalisation of its
bacterial flagellin, as well as via components of its type
3 secretion system.65 Streptococcus pneumoniae

Table 2 Summary of human TLRs and their major ligands.39–42 For full general details of TLRs and their ligands please refer to
reviews 39–41

Toll-like receptor Receptor ligand(s) Pathogen association

TLR1 associates with TLR2 Triacyl lipopeptides Bacteria

TLR2 Lipoprotein Predominantly Gram −ve bacteria, fungi
Zymosan Fungi
Peptidoglycan Gram +ve bacteria
Lipoteichoic acid Gram +ve bacteria
Porins Neisseria spp.

TLR3 Double-stranded RNA Viruses
TLR4 LPS Gram −ve bacteria

TLR5 Flagellin Bacteria

TLR6 associates with TLR2 to aid
discrimination between diacyl and triacyl lipopeptides

Diacyl lipopeptides Mycoplasma spp.

TLR7 Single-stranded RNA Viruses may have a role in immune
response to cancer

TLR8 Poly-G oligonucleotides Viruses

TLR9 Single-stranded RNA Bacteria
Unmethylated CpG-DNA

TLR10 Currently remains unknown
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pneumolysin has been shown to activate NLRP3 in mice66

and both S. pneumoniae and P. aeruginosa corneal infection
caused upregulated expression of NLRP3 and NLRC4 in
human keratitis.67 The significance of the inflammasome
and stimulation of pyroptosis in corneal infection appears
therefore to be a considerable contributory factor to tissue
destruction and impairment of vision.

Pathogens causing corneal disease

Pattern recognition mechanisms activated by microbial
pathogens in the cornea

Pseudomonas aeruginosa The healthy human cornea is
inherently resistant to infection. This is attributable to
multiple integrated factors that have evolved across
species to protect the eye against a broad range of
microbial pathogens, including bacteria, fungi, viruses
and protozoa.7

P. aeruginosa is the most common cause of Gram-
negative bacterial keratitis29,71 with a more severe clinical

course than other bacterial pathogens if left untreated.72

The healthy eye is generally protected against
P. aeruginosa infection. Although cultured corneal
epithelial cells are easily invaded and killed by most
clinical and laboratory isolates of P. aeruginosa,19,73

extremely large inoculates of invasive and cytotoxic
P. aeruginosa onto intact mouse or rat corneas in vivo
results in rapid bacterial clearance from the ocular surface
without pathology.74 This suggests that certain defence
mechanisms against infection exist in the healthy eye that
are absent from laboratory culture conditions. Although
many P. aeruginosa strains grow readily in undiluted tear
fluid despite its antimicrobial components such as
lactoferrin and lysozyme,75,76 tear fluid can still protect
corneal epithelial cells against them.77,78 This is thought to
be due to the tear fluid acting directly upon corneal
epithelial cells to make them more resistant to
P. aeruginosa invasion and cytotoxicity.74

Should conditions enable P. aeruginosa to breach the
corneal epithelium, its lipopolysaccharide (LPS) and

Figure 1 Assembly and activation of the inflammasome. NLRP3 and NLRC4 are the two inflammasomes described to date that
assemble at the corneal surface in response to infectious agents. TLR4 stimulation induces Nlrp3 gene expression and NLRP3
transcription; in contrast, NLRC4 is constitutively expressed in the cell.58 Both inflammasomes share common structural domains
(nucleotide-binding domain and LRR) and the ability to recruit the adaptor molecule ASC, which facilitates the association of
pro-caspase-1.56 Different mechanisms of activation have been described for each inflammasome: extracellular ATP activates NLRP3 via
P2RX7 receptor stimulation that provokes a decrease of the intracellular K+ levels.68 Alteration of Cl− or Ca2+ fluxes or production of
reactive oxygen species by mitochondria (a consequence of cell damage), are also able to stimulate the NLRP3 inflammasome.
Furthermore, phagocytosis of damage-associated molecular pattern molecules promotes lysosome destabilization and the release of
cathepsin B protein into the cytosol, activating the canonical inflammasome.69,70 NLRC4 is activated via internalisation of flagellin and
components of the Pseudomonas bacterial virulence factor type 3 secretion system.65 NLRC4 needs a protein known as Naip for its
stimulation: Naip5-6 proteins are responsible for binding the internalised flagellin and Naip2 binds the components of the type
3 secretion system.56,57,59 These inflammasomes lead to the activation of Caspase-1 protease. Caspase-1 protease is required to cleave the
pro-interleukins necessary to generate the mature forms of IL-18 and IL-1β. The cysteine protease Caspase-11 can be also activated by
NLRC4 and promote the maturation of these pro-interleukins.61
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flagellin molecules are recognised by TLR4 and TLR5 on
macrophages of the corneal stroma,79 initiating a pro-
inflammatory pathway via the well-characterised adaptor
molecule MyD88. MyD88 appears to be essential to all
TLR signalling except TLR3.80

Another adaptor molecule used by TLR4 is TIRAP
(also known as Mal); although this is activated in
P. aeruginosa infection, it does not appear to mediate
in vivo keratitis.79 TLR4 must be associated with
co-stimulatory molecule MD-2 to recognise LPS;81

accessory proteins lipopolysaccharide-binding protein
and CD14 transfer the LPS molecules from the bacteria to
the TLR4/MD-2 complex.82 Resident myeloid cells are
capable of conferring LPS responsiveness,83 but although
TLR4 is also expressed on human corneal epithelial cells,
MD-2 is not detectable. It is thought that MD-2 expression
is enabled by the infiltration of immune cells such as
natural killer cells, which activate the JAK2/STAT1
transcription pathway and produce IFN-γ.84,85 In a
murine model of corneal inflammation, Chinnery et al83

demonstrated that TLR4 activation on resident corneal
macrophages and DCs stimulated macrophage and
neutrophil recruitment and induced corneal haze.

On activation, numerous adaptor proteins are recruited
to initiate the inflammatory response (see Figure 2).
In addition to the MyD88 pathway, a non-MyD88
pathway via TRIF exists which has also been found to be
present in P. aeruginosa keratitis.83 MyD88/TRIF
pathways induce production of a chemokine known as
CXCL1/KC which recruits neutrophils to the cornea from
limbal blood vessels. MyD88/TRIF pathways also
promote the production of IL-1α and IL-1β, which creates
a positive feedback loop via the interleukin 1 receptor
IL-1R1 interaction with MyD88.79 The presence of TLR4 in
murine corneal P. aeruginosa infection has also been
associated with the release of antimicrobial factors such as
nitric oxide (NO), the product of inducible nitric oxide
synthase (iNOS) and β-defensin 2.86

Staphylococcus aureus Although studies consistently
report Staphylococcus spp. as some of the commonest
causes of bacterial keratitis,90–92 contact with the
organisms infrequently results in infection. A study by
Moreau et al,93 in which S. aureus was topically applied
to scarified rabbit eyes resulted in bacterial killing and
identified a role for phospholipase A2 in the tear film as

Figure 2 Immune recognition of Pseudomonas aeruginosa molecular patterns. LPS-binding protein binds the LPS from the P. aeruginosa
cell wall and the complex is recognised by the CD14 receptor. CD14 transfers the LPS to the MD-2 molecule that is associated with TLR4.
MD-2 undergoes changes in its conformation and triggers the stimulation of TLR4. TLR4 dimerises and recruits TIR-domain-containing
adaptor proteins (TRIF and TIRAP) to start the signal transduction. TIRAP requires MyD88 protein for its activation, which also recruits
IL-1 receptor-associated kinases IRAK4 and IRAK1. Phosphorylation of IRAK1 by IRAK4 activates the E3 ubiquitin protein ligase
TNFR-associated factor 6 (TRAF6). This activates TGF-β associated kinase (TAK)1 which results in transcription of pro-inflammatory
cytokines via the NF-kB and mitogen-activated (MAP) kinase/JNK pathways. TLR3 can also signal via TRIF.87 Activation of TLR3/4
recruits TRIF via TRAM which signals through RIP1 and TRAF6 to the NF-kB and JNK pathways. TRIF also activates TRAF3, which
through TBK1 and IKK phosphorylates IRF3 and stimulates the production of type I interferons.80,88,89 ssDNA containing unmethylated
CpG motifs is sensed by TLR9. In contrast to the other TLRs mentioned above, TLR9 is localised in the endosome. It also activates the
MyD88-dependent pathway.39,41
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a crucial bactericidal agent. Interestingly, work by Heimer
et al94 suggests that on infection of human corneal
epithelial cells in vitro the principal difference between
toxigenic and non-toxigenic strains of S. aureus appears to
be an increased activation of stress response molecules
such as heat shock proteins on exposure to a toxigenic
strain of S. aureus.
Recognition of S. aureus at the corneal surface has been

shown to be mediated by TLR2.95,96 At least three
different PAMPs have been identified as binding to TLR2
and activating the immune response in S. aureus keratitis:
bacterial lipoproteins,95 peptidoglycan molecules,97 and
S. aureus protein A (SpA).98 TLR2 then activates the
MyD88 pathway;95 however, Kumar et al98 demonstrated
that SpA also activated other pathways (p38 and ERK) via
an unknown receptor, citing TNF-α receptor 1 (TNFR1) as
a potential candidate. The work of Heimer et al94 lends
further support to this theory: a large increase in the
dendritic cell chemokine CCL20 was identified when
human corneal epithelial cells were stimulated with both
toxigenic and non-toxigenic strains of S. aureus, which
appeared to be independent of TLR2 stimulation.
Bacterial lipoproteins have also been shown to activate
alternative pathways to MyD88, including p38 and ERK
but also JNK. This results in release of pro-inflammatory
mediators and chemotactic cytokines such as IL-6, IL-8,
and ICAM-1 as well as antibacterial molecules such as
NO.95 Peptidoglycan was shown to activate all four of the
pathways described above;97 this study also identified
release of human β-defensin 2 by the epithelial cells, the
same group later confirming its release via pathways
downstream of TLR2.99 A study by Adhikary et al100

described the JNK pathway as predominant in TLR2
activation.

Onchocerca volvulus (onchocerciasis) Onchocerciasis is due
to infection with the microfilarial nematode worm
Onchocerca volvulus, which can produce a blinding
keratitis. Systemic response to O. volvulus has been shown
to vary based on differing immunological profiles, with
some infected individuals displaying no symptoms, while
others develop a severe dermatitis known as sowda.101,102

Studies in animals suggest that previous exposure to
O. volvulus antigens is necessary to develop systemic
symptoms, indicating a role for the adaptive immune
response.103,104 A strong Th2 response has been
implicated, with release of IL-4, IL-5, IFN-γ, IgG1, and
IgE.105–107

More recently, attention has focused on the fact that
O. volvulus maintains an endosymbiotic relationship with
Wolbachia bacteria and that microfilaria release bacterial
products which activate the immune response in human
embryonic kidney cells and mice.108,109 Microfilaria can
invade the eye and stimulate both innate and adaptive

immunity. Recognition of Wolbachia products on
macrophages and DCs is mediated by TLR2/TLR6,
leading to MyD88/TIRAP activation and the release of
pro-inflammatory cytokines via NF-kB.110 Previous work
suggests that Th2 immune responses predominate (see
Pearlman and Hall111 for review), but Turner et al112

showed that activated CD11c+ DCs upregulate CD80 and
CD86 adhesion molecules and can stimulate a CD4+ T-cell
activation with a predominantly Th1 response.
Interestingly, this study also demonstrated that Wolbachia
depletion resulted in a switch to a Th2-driven
inflammatory response.
Once activated, macrophages release further

Th1-driving cytokines such as IL-12 and TNF-α.109,111

Neutrophils are recruited from the limbal vessels via
release of CXC chemokines such as CXCL1 and CXCL2
and upregulation of vascular adhesion molecules such as
PECAM-1.113,114 Eosinophil infiltration occurs later
in the disease but aggravates the inflammatory
response.106,114–116 However, neutrophil involvement is
thought to be the driving factor behind the progressive
corneal haze seen in onchocerciasis.116

Fungi The most common agents in fungal infection are
Fusarium spp. and Aspergillus spp.117 Compared with
bacterial keratitis, fungal keratitis is frequently associated
with poorer outcomes118 and is a recurrent problem in
many parts of USA with a recent increase in contact lens
wearers.119–121 In developing countries, ocular trauma is a
major risk factor.31,122,123 Fungal spores are able to
penetrate compromised epithelium where they germinate,
expressing β-glucan and α-mannan molecules on their
surface. These are recognised by the receptors Dectin-1 and
Dectin-2 on macrophages, which then signal via spleen
tyrosine kinase (Syk) and CARD 9 proteins to activate the
NF-kB pro-inflammatory pathway. This produces IL-1β
and chemokines such as CXCL1 and CXCL2.124,125 IL-1β is
recognised by the IL-1R1 receptor and via MyD88 activates
further pro-chemotactic cytokines and upregulation of
vascular adhesion molecules to promote neutrophil
recruitment. Leal et al have also demonstrated a role for
TLR4 in fungal killing.125 Analysis of infected human
corneas has revealed high levels of IL-1β, IL-8, IL-17, and
TNFα in the early stages of fungal infection. Later stages
identified CD3+ and CD4+ T-cells, with associated high
levels of IL-17 and interferon-γ.126 A study by Taylor et al127

identified IL-17 as a cytokine involved in fungal killing;
infiltration of Th1 and Th17 cells and a subpopulation of
IL-17 producing neutrophils enabled optimal immune
protection.

Herpes simplex virus Herpes simplex virus (HSV) is
thought to be the primary global cause of infectious
blindness. HSV1 is more commonly associated with oral
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and ocular pathology, while HSV2 is frequently
transmitted through sexual contact.128 In addition, HSV
infection presents the particular problem of recurrent
infection.
HSV1 binds to host cells via membrane glycoproteins.

To date, five glycoproteins have been described that
mediate binding and fusion with the host cell:
glycoprotein C (gC), gB, gD, gH, and gL. Each of these
has a role in the binding and adhesion process to enable
the viral capsid to enter the cell.129–131 Several host surface
receptors have been identified, including herpes virus
entry mediator, nectin-1, 3-O-sulphated heparan sulphate
and paired immunoglobulin-like type 2 receptor α (PILR-
α).132–135 However, a study by Shukla et al136 identified
nectin-1 as being the crucial mediator in a murine model
of corneal infection. Of note when considering the
mechanism of HSV1 infection is the fact that phylogenetic
analysis suggests the evolution of at least six distinct
HSV1 genogroups, with multiple recombination events
detected in the genome coding for glycoproteins.137,138

The high mutation rate of such viral proteins provides an
additional challenge when aiming to identify targeted
and/or personalised therapeutic options.
HSV1 activates multiple immune pathways on binding

with a cell. TLR2−/− mice have been shown to have a
decreased inflammatory response to infection,139,140

whereas CpG sequences of HSV1 DNA are recognised
stimulators of TLR9.141,142 TLR3 recognises double-
stranded RNA and has been identified as an important
mediator of HSV1 infection.143,144 Human corneal
epithelial cells have been shown to respond to HSV1 via
TLR3 and also to express TLR7 as a result of infection.145

Additionally, TLR4 is activated in mice by endogenous
heat shock protein 70 (Hsp70) and β-defensin-3 expressed
by corneal cells in response to the virus.140 Interestingly,
MyD88−/− mice had reduced corneal inflammation, but
were unable to control viral spread, with 70% dying of
presumed HSV encephalitis.
TLR9 is known to activate the NF-kB, p38 and JNK

pathways.40 In addition, the transcription factors cAMP
response element (CRE) and CCAAT/enhancer binding
protein (C/EBP) are activated in the mouse corneal
endothelium, leading to release of numerous pro-
inflammatory cytokines including IL-6, RANTES/CCL5
and CXCL10.146 Ligand binding to TLR3 activates TRIF,
which in turn activates NF-kB and interferon regulatory
factor 3 (IRF3), an interferon regulatory factor. In addition
to cytokines such as IL-6, IL-8, and TNF-α produced by
NF-kB transcription, activation of IRF3 results in
production of anti-viral cytokines such as type 1
interferons (IFN) -α and -β.145,147–151 TLR7 signals both via
MyD88 and NF-kB but also via IRF7, which causes type 1
IFN to be produced; in addition, IRF7 can interact with
the MyD88 pathway via TRAF6 and IRAK4.152,153

Activation of these pathways recruits DCs,
macrophages, neutrophils and NK cells to aid in clearance
of the virus (see Rowe et al154 for a review of HSV
keratitis, including innate immune cells and their
ligands). Latency of the virus occurs due to a switch in the
viral genome that suppresses lytic genes and maintains an
equilibrium between latency associated transcripts (LATs)
and micro RNAs that silence the active genome.155

Immune control of the virus during the latency phase is
thought to exist, mediated by HSV1-specific CD8+ T-cells
capable of releasing IFN-γ.156 Although the causes and
mechanisms for reactivation are beyond the scope of this
review, several differences between primary infection and
recurrent disease are known to exist. Despite the fact that
IL-6 is an important pro-inflammatory cytokine in
primary disease, it has been shown to be of little
significance in reactivation, in contrast to CXCL1 which
acts as a chemokine to attract neutrophils to the site of
infection.157 CD4+ and CD8+ T-cells are important
mediators in recurrent disease,158 while other factors such
as the chemokines CCL2 and CCL3 appear to have their
roles reversed in reactivation, with CCL2 increasing
disease severity and CCL3 appearing to offer some
protection.159 However, full details of the differences
between primary and recurrent infection remain to be
elucidated.

Acanthamoeba Acanthamoeba is a ubiquitous protozoan
pathogen capable of causing severe and persistent corneal
infection. It exists in active trophozoite form but can also
encyst, creating the potential for reactivation of disease
after treatment is ended.160 Several studies have
concluded that infection with Acanthamoeba does not
protect against reinfection, suggesting that
immunological defence is predominantly mediated by the
innate immune system.161–164

Patients presenting with Acanthamoeba infection have
been found to have low levels of anti-Acanthamoeba sIgA
in their tearfilms,165 raising the suggestion that IgA is an
important protective factor against infection at the corneal
surface. Various protective mechanisms of IgA have been
identified, including inhibition of Acanthamoeba binding to
epithelial cells,161,166 complement activation and
opsonisation167,168 and augmentation of neutrophilic
killing.169

More recently, the involvement of TLRs in pathogenesis
of Acanthamoeba keratitis has been characterised. Under
favourable conditions, Acanthamoeba is able to attach to
the cell surface via mannose-binding protein, which
interacts with mannose-containing glycoproteins on the
corneal surface.170,171 The trophozoite then releases a
mannose-induced serine protease (MIP-133) which causes
cytolysis of corneal epithelial cells and enables the
Acanthamoeba to infiltrate the deeper layers of corneal
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tissue.172,173 Acanthamoeba is recognised by TLR4, which
initiates the MyD88/NF-kB pathway and also the
MAPK/ERK pathway, leading to release of pro-
inflammatory and chemotactic mediators such as IL-8,
CXCL2, TNF-α, and IFN-β.174,175

Macrophage activation in the presence of anti-
Acanthamoeba antibody and IFN-γ has been shown to
demonstrate trophozoite killing activity.167,176

Macrophages are thought to be a crucial mediator in early
infection: depletion of macrophages in a Chinese hamster
model of Acanthamoeba keratitis produced a notable
worsening of disease.177 Neutrophils are also capable of
killing trophozoites,169,178 and both neutrophils and
macrophages are able to kill cysts; however, no
chemotactic stimulus is recognised when cysts are
dormant in the cornea.179 Steroid use in treatment of
Acanthamoeba has been shown to increase the virulence of
the disease, with proliferation of trophozoites and
stimulation of excystment.180

An additional factor in the pathology of Acanthamoeba
keratitis is its frequent co-existence in symbiotic
relationships with potentially pathogenic species of
bacteria. A study by Iovieno et al181 identified strains of
Legionella, Pseudomonas, Chlamydia and Mycobacterium
present in confirmed cases of Acanthamoeba keratitis.
Where an endosymbiotic relationship was found, an
increase in corneal toxicity was also noted. Moreover, the
authors suggest that bacterial co-infection could delay or
confound the diagnosis of Acanthamoeba, further
damaging the cornea before correct treatment is initiated.

The relevance of animal models of keratitis

Much of the work that has been carried out in
understanding the pathogenesis of infectious keratitis has
used animal models. These provide a valuable insight into
immune function in the mammalian cornea, but require
complementary approaches when regarded from a
clinical perspective. Animal models are limited by the fact
that they are anatomically and physiologically distinct
from human tissues. Examples include the fact that the
blink rate in both mice and rabbits is lower than that in
humans;182,183 humans also have a much higher
concentration of lysozyme in their tears.184 Rabbits
possess a nictitating membrane, and the structure of a
human cornea is different in several ways to that of mice
and rabbits: Bowman’s layer and Descemet’s membrane
are thicker,185 the orientation of the collagen is different186

and the depth of each of the layers varies depending on
species.187

On a molecular level, examples of species differences
include the fact that mice are known to use several NAIP
accessory proteins to activate the NLRP4 inflammasome,
whereas in humans only one type of NAIP has been

found.59,188 Caspase-11 is known to be present in mice,
but its analogue in humans is caspase-4.189 Differences in
cytokines also exist, such as MIP-2 in mice which is
equivalent to human IL-8.190 In addition, the surface
mucins of humans are structurally different to those of
other mammals.191 Moreover, the methods used to cause
keratitis in animal models do not always mimic the
natural infective process. Intrastromal injection is
frequently used that bypasses the cell surface stage of
infection;192–195 other methods include removal of the
corneal epithelium,196 corneal scratch197 or applying
contact lenses coated in bacteria to wounded corneas.198

Generally, the differences between animal and human
anatomy and immunology suggest that a cautious
approach is necessary when interpreting findings from
animal studies in a clinical perspective. The development
of primary human cell/explant models would bring us
closer to revealing the true nature of pathogen–host cell
interactions in microbial keratitis.

Potential targeted molecular therapies

Studying immune pathways and mechanisms of
infectious keratitis could identify new therapeutic targets
to ameliorate disease and reduce tissue damage. At
present, clinical use of topical steroids is frequently relied
upon, but this is a non-specific attempt to reduce
inflammation and can be associated with complications
such as corneal thinning and perforation, increased
intra-ocular pressure and poorer outcomes in infections
such as Nocardia, HSV1, and Acanthamoeba
keratitis.180,199,200 The Steroids for Corneal Ulcers Trial
(SCUT) has shown in large multicentre trials that steroids
have no significant benefit or harm if used adjunctively
alongside treatment of bacterial keratitis in the short term,
but appear to improve visual outcomes at 12 months post
treatment. Those with the most significant improvement
in visual outcomes were those whose baseline vision was
poorest, with most of the improvement occurring within
the first 3 months for all patients.199,201,202

In the search for more specific, tailored therapies,
molecular targets are being investigated as a means of
reducing tissue damage and restoring sight. Various
avenues are being explored according to specific
pathogen characteristics and cellular pathways. Work is
continuous, but it appears that promising opportunities
are being identified. Alekseev et al203 have recently
identified a kinase, ataxia telangiectasia mutated (ATM)
kinase, whose inhibition reduces the severity of keratitis
in a mouse model of HSV1 keratitis and additionally
slows viral replication in rabbit and human cultured
corneas. A high-affinity human monoclonal antibody to
S. aureus α-toxin has been found to be effective at
reducing corneal damage204 and a new antibiotic, targocil,
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has had some preliminary success at inhibiting the
severity of staphylococcal infections.205 Several potential
therapies have been identified in Pseudomonas infection,
including lithium chloride206 and a caspase-1 inhibitor
that reduces the amount of IL-1β produced.207 Factors that
improve corneal inflammation include the apoptotic
Fas pathway which regulates the production of pro-
inflammatory cytokines208 and a phospho-inositol-3-
kinase (PI3K)/Akt pathway that activates a receptor
known as triggering receptor expressed on myeloid cells 2
(TREM-2).209 All of these reduce inflammation and tissue
damage and may be avenues to explore further.
A novel approach has been investigated in fungal

keratitis, with some success: using small interfering RNA
targeted against TLR2, Guo et al210 were able to improve
the outcome of A. fumigatus disease in a rat model, with a
decreased fungal burden and reduced production of
pro-inflammatory cytokines leading to clearer corneas
and fewer instances of perforation. A pathway has also
been identified in sterile corneal inflammation to inhibit
neutrophil infiltration and macrophage activation: heat
shock protein HSPB4 appears to act as a damage-
associated molecular pattern, activating TLR2 and the
NF-kB pathway.211 The authors showed that inhibition of
this pathway via HSPB4 antibodies or TNF-α stimulated
gene/protein 6 (TSG6) suppressed macrophage activation
and resultant neutrophil infiltration, leading to an
improvement in corneal clarity. Meanwhile the
endosymbiotic nature of O. volvulus with Wolbachia
bacteria has led to trials of doxycycline being used to
deplete the bacteria and facilitate treatment of the
worms.212–214

Corneal infiltrates in non-keratitic diseases show some
promise and offer another avenue of exploration: a case
report of cryopyrin associated periodic fever syndrome, in
which a mutation in the NLRP3 gene causes
overexpression of IL-1β, demonstrated successful
treatment outcomes with IL-1β monoclonal antibody
kanakinumab,215 and anakira, an IL-1 antagonist, has
been used successfully in corneal infiltrates.216

Currently, there is strong interest in the use of collagen
cross-linking (CXL) using ultraviolet-A (UV-A) light and
riboflavin is a treatment of infectious keratitis. In this
procedure riboflavin is applied to the affected corneal
surface and the agent acts as a photosensitizer, which
generates reactive oxygen species which are activated by
UV-A light. The resulting photochemical reactions are
thought to result in covalent bonds to cross-link collagen
fibres in the corneal stroma and thus increase the strength
of the cornea. Alio et al217 performed a meta-analysis of 12
studies that used this approach against a variety of types
of microbial keratitis. They analysed a total 104 eyes that
were treated using a range of treatment protocols
with varying levels of clinical presentation. In the

majority of cases cross-linked patients were reported to
have halting of the corneal melting process. Few patients
developed complications from CXL therapy. The
treatment appeared to show promise in in bacterial and
Acanthamoeba infections but less so in fungal infections.
There were concerns that CXL could halt drug
penetration for patients with fungal keratitis.
Additionally, in rabbit studies of Acanthamoeba keratitis
CXL showed no beneficial effect. A major difficulty with
the data from the studies so far is the wide variation in the
type of infectious keratitis cases, with patients at different
stages of clinical presentation treated with varying
therapeutic regimens. Until more controlled studies are
undertaken and reported, it is difficult to recommend
CXL routinely. However, CXL in microbial keratitis does
offer a reasonable rationale to halt corneal melting in
selected cases. It is likely that a combined approach using
PAMP inhibitor-based anti-inflammatory agents with
newer antimicrobials/CXL/anti-matrix metallo-
proteineases will show the strongest effect in treating
corneal tissue damage.
In the context of infectious keratitis the goal of

individualised, targeted therapy appears to be moving
closer. However, in addition to the range of molecular
pathways activated, the characteristics of a bacterial
keratitis may depend upon such features as bacterial
virulence and toxigenicity whereas a viral keratitis may
depend upon the viral genotype and rate of mutation.
Factors such as these may continue to present challenges
that must be taken into account when designing future
therapies.

Conclusion

The importance of PAMPs has significantly increased
over the past decade. We have reached an exciting point
in the study of infectious keratitis, with so many
molecular pathways being identified. This provides
several opportunities to develop therapies targeted to
modifying disease outcomes. However, more work on the
various potential therapeutic targets that exist within the
molecular pathways we are beginning to define must be
done. Ultimately, these therapies will need to balance
adequate treatment of disease with minimising tissue
damage in such a thin tissue as the highly specialised
cornea. This presents an ongoing challenge for both
scientists and clinicians.218 Nonetheless, we may now be
closer than previously imagined to effective, targeted
therapies to treat corneal tissue damage and subsequent
blindness as a result of the global disease that is infectious
keratitis.
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