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Abstract

A specialized tissue type, the keratinizing epithelium,
protects terrestrial mammals from water loss and
noxious physical, chemical and mechanical insults.
This barrier between the body and the environment
is constantly maintained by reproduction of inner
living epidermal keratinocytes which undergo a
process of terminal differentiation and then migrate
to the surface as interlocking layers of dead stratum
corneum cells. These cells provide the bulwark of
mechanical and chemical protection, and together
with their intercellular lipid surroundings, confer
water-impermeability. Much of this barrier function
is provided by the cornified cell envelope (CE), an
extremely tough protein/lipid polymer structure
formed just below the cytoplasmic membrane and
subsequently resides on the exterior of the dead
cornified cells. It consists of two parts: a protein
envelope and a lipid envelope. The protein envelope
is thought to contribute to the biomechanical
properties of the CE as a result of cross-linking of
specialized CE structural proteins by both disulfide
bonds and N ®-(y-glutamyl)lysine isopeptide bonds
formed by transglutaminases. Some of the structural
proteins involved include involucrin, loricrin, small
proline rich proteins, keratin intermediate filaments,
elafin, cystatin A, and desmosomal proteins. The lipid
envelope is located on the exterior of and
covalently attached by ester bonds to the protein
envelope and consists of a monomolecular layer of
w-hydroxy-ceramides. These not only serve of
provide a Teflon-like coating to the cell, but also
interdigitate with the intercellular lipid lamellae
perhaps in a Velcro-like fashion. In fact the CE is a

common feature of all stratified squamous epithelia,
although its precise composition, structure and
barrier function require-ments vary widely between
epithelia. Recent work has shown that a number of
diseases which display defective epidermal barrier
function, generically known as ichthyoses, are the
result of genetic defects of the synthesis of either CE
proteins, the transglutaminase 1 cross-linking
enzyme, or defective metabolism of skin lipids.

Introduction

Protection of the body from dehydration and noxious
physical, mechanical and chemical insults from the
environment is essential for terrestrial life. All beings
from bacteria to plants and humans protect themselves
by some form of barrier. For mammals the outermost
bulwark of this defense-line are layers of terminally
differentiated dead cornified cells on the surface of the
epidermis of the skin.

Akin to a wall built from bricks and mortar, the cornified
layer also consists of hard building blocks (the individual
corneocytes) stuck together with space-filling mortar (inter-
corneocyte lipids). Barrier function of normal epidermis
depends on the quality of its bricks and mortar. The buil-
ding blocks of the epidermal barrier are formed during
the complex terminal differentiation program from inner
living dividing basal keratinocytes, culminating in the
formation flattened cornified cells (corneocytes) which,
as they are moved toward the surface, are eventually
sloughed by abrasion. Each individual corneocyte
consists largely of tightly bundled keratin filaments aligned
roughly parallel to the skin surface (80-90% of total mass)
encased in a sturdy bag termed the cornified cell envelope
(CE) (about 10% of total mass). The CE is extremely
insoluble, ~15 nm thick, and is composed of two major
parts. The protein envelope (~10 nm thick) is formed by
covalent cross-linking of specific structural proteins by
sulfhydryl oxidases and transglutaminases (TGases)
(Hohl, 1990; Polakowska and Goldsmith, 1991; Reichert
et al., 1993; Simon, 1994; Eckert et al., 1997). This is
coated by the lipid envelope which is a ~5 nm thick
layer of lipids that are covalently attached to exterior of
the protein envelope (Wertz and Downing, 1991). The
lipid envelope creates cohesion between the cornified
cells and the surrounding intercellular lipids, and may
be essential for alignment of these lipids into lamellae
(Swartzendruber et al., 1989; Wertz et al., 1989a).

This review describes our current knowledge and
models of the composition and formation of the stratum
corneum barrier. We also report current information on
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the molecular bases of certain inherited diseases affecting
the barrier function.

The cornified cell envelope

For morphologists, the CE is an electron dense band
located just beneath the keratinocyte plasma membrane
that first appears in the most superficial granular or trans-
itional cells of terminally differentiating stratified squamous
epithelia (Brody, 1969; Hashimoto, 1969; Ishida-Yamamoto
and lizuka, 1995) and gradually increases in thickness and
density. Mature CEs cover and incorporate desmosomal
attachment plaques and utilize proteins of those for CE
assembly (Steinert and Marekov, 1995; Robinson et al.,
1997; Steinert and Marekov, 1997) forming a morpholo-
gically uniform layer about 15 nm thick in the terminally
differentiated dead cells (Jarnik et al., 1998).

The biochemist uses the term CE for the most insoluble
fraction from stratified squamous epithelia, referring to
the mass remaining after exhaustive removal of keratins,
lipids and other solubilizable components by detergents,
reducing agents (e.g. 2-mercaptoethanol), and concentrated
chaotropic agents (urea, guanindine-HCI) (Steinert and
Marekov, 1995). The extreme insolubility of CE in vivo is
a result of macromolecular polymerization of various
keratinocyte proteins by both disulfide and isopeptide
bond formation. However, the disulfide bonds created
by sulfhydryl oxidase (Yamada et al., 1987) are lost
during CE isolation procedures in order to remove the
quantita-tively overwhelming keratin mass (Hohl et al.,
1991a). Therefore, the in vitro analyzed CE means in

Table 1. Human transglutaminases.

practice a highly insoluble macromolecular protein
polymer held together by isopeptide bonds (Hohl, 1990;
Polakowska and Goldsmith, 1991; Reichert et al., 1993;
Simon, 1994; Eckert et al., 1997), and may thus differ
somewhat in structure and composition from the in vivo
structure. Nevertheless isolated CE fragments from
many types of epithelia appear as sheets uniformly 15
nm thick (Jarnik et al., 1998). The isopeptide bonds are
formed by TGases which release ammonia from
glutamine residues of substrate proteins to create a
thioester acyl-enzyme intermediate, and consecutively
transfer the acyl residue to primary amines (Folk and
Finlayson, 1977). In biological systems the primary amine
is either provided by the e-amino group of a protein-
bound lysine thereby creating an Né-(y-glutamyl)lysine
isopeptide bond, or by a diamine (most commonly
spermidine) thereby forming an N',N8-bis(y-
glutamyl)spermidine bond (Lorand and Conrad., 1984).
Although the abundance of spermidine cross-linking is
minuscule in CE formation, and has been poorly
investigated, this pathway might be more significant in
certain pathological conditions such as psoriasis (Martinet
et al., 1990).

The TGases

Human TGases constitute an evolutionarily related family
of Ca?* dependent enzymes. Seven members of the
TGase family have been identified in the human genome
so far, which are listed in Table 1. Four of these,

Si Proteolyti
Enzyme Gene locus (kIIDZ:) Expression Functions p:c?czzzirzcg?

TGase 1

) 14911.2 92 epidermis CE formation Yes
(keratinocyte TGase) q P ! I
TGase 2

20q11.2 77 biquitous Apoptosis? No
(tissue TGase) q ubiquitou poptos!
TGase 3
(epidermal TGase) 20q11.2 77 epidermis CE formation Yes
TGase 4 clotting of the
3p21-22 75 rostate ) Yes
(prostate TGase) P P seminal plasma
platelets,
Factor Xl 6p24-25 80 histiocytes, blood clotting Yes
megakaryocyts
throblast tructural
Band 4.2 15915 72 enythrobasts struciura Inactive
erythrocytes protein

TGase X ? 81?7 keratinocytes? ? ?
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TGases 1, 2, 3 and X are commonly expressed in
epithelia such as the epidermis (Kim et al., 1991;
Aeschlimann et al., 1998), although to date only TGases
1 and 3 have proven importance in CE assembly (Candi
et al., 1995; Tarcsa et al., 1997; Tarcsa et al., 1998
Candi et al., 1999). It has also been proposed that the
cross-linking by these enzymes coordinates
mechanically the association between the CE and the
underlying intracellular keratin intermediate filaments
(Candi et al., 1998a), and perhaps also in the bundling of
keratin filaments (Clement et al., 1998).

The TGM1 gene encoding the TGase 1 enzyme is
located on chromosome 14q11.2 (Yaminishi et al., 1990;
Kim et al., 1992). The synthesis of TGase 1 is regulated
in cultured keratinocytes by various stimuli, including
phorbol esters, retinoids and corticosteroids (Floyd and
Jetten, 1989; Liew and Yamanishi, 1992; Yamada et al.,
1994) and by intercellular Ca2* concentrations,
presumably by AP-1 mediated gene regulatory signals
(Dlugosz and Yuspa, 1994; Mariniello et al., 1995). In
epithelia such as the epidermis, TGase 1 expression is
induced shortly after commitment to terminal
differentiation (Michel et al., 1992), although a minor
degree of TGase 1 expression is detectable in
undifferentiated basal keratinocytes (Schroeder et al.,
1992; Kim et al., 1995a). The bulk of the TGase 1
enzyme is bound to the plasma membranes by its
constitutively N- and S-fatty acylated 10 kDa amino
terminal part (Rice et al., 1990; Phillips et al., 1993;
Steinert et al., 1996a). During terminal differentiation,
some of the full-length TGase 1 enzyme undergoes
proteolytic cleavage into fragments of apparent electro-
phoretic mobility of 10/67/33 kDa which are held together
by secondary forces and thus remain membrane-bound
(Steinert et al., 1996b). This 10/67/33 kDa complex shows
a 200-fold higher specific activity in standard in vitro

Table 2. CE precursor proteins
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TGase assays (Kim et al., 1994; Kim et al., 1995b). Also,
some of the 67 kDa fragment harboring the catalytic
activity may cycle off the membranes and thus might
contribute to cross-linking at sites remote from the plasma
membrane. However, the mechanisms by which the
TGase 1 enzyme is proteolytically activated remain
unexplored.

The TGM2 and TGM3 genes encoding the TGase 2
and 3 enzymes are located close to each other on
chromosome 20q11.2 (Wang et al., 1994). Expression of
TGase 3 in cultured keratinocytes is triggered by
elevated extracellular Ca++ presumably through
adjacent cooper-ating Ets and Sp1 transcription factors
(Lee et al., 1996). TGase 3 is translated as a soluble
inactive proenzyme of 77 kDa, and is subsequently
activated by proteolysis at a flexible loop sequence into
an amino-terminal 50 kDa domain harboring the active
site and the carboxy-terminal 27 kDa portion (Negi et al.,
1985; Kim et al., 1990; Kim et al., 1993). No diseases
have yet been linked to muta-tions in the TGM3 gene.

Structural protein components of CEs

Table 2 lists proven CE protein constituents.

Involucrin is ubiquitously expressed in stratified
squa-mous epithelia, thus suggesting it is commonly
involved in CE formation. The involucrin gene is located in
a cluster with the genes for numerous other CE proteins
in the so-called epidermal differentiation complex (EDC)
region on chromosome 1921 (Volz et al., 1993; Mischke
et al., 1996). The involucrin gene has a single exon
encoding the entire protein (Eckert and Green, 1986)
and shows astonishing polymorphism in humans (Simon
etal., 1991; Djian et al., 1995). Mammalian involucrins
evolved from a common ancestor gene by tandem
duplications of a 45-60 base pair sequence in prosimians

Relative abundance Cross-linking
Name Gene locus Size (kDa) in human foreskin sites identified

CE in vivo?
Involucrin 1g21 (EDC) 65 2-5% Yes
Loricrin 1921 (EDC) 26 80% Yes
SPRs 1921 (EDC) 6-26 3-5% Yes
Cystatin A 3cen-g21 12 2-5% Yes
Proelafin 20912-q13 10 <1% Yes
(Pro)filaggrin 1921 (EDC) >400 <1% Yes
Type Il keratins 12913 56-60 <1% Yes
Desmoplakin 6p21-ter 330/250 <1% Yes
Envoplakin 17925 210 <1% Yes
Periplakin 16p13.3 195 <1% Yes
S100 proteins 1g21 (EDC) 12 <1% No
Annexin | 9g12-g21.2 36 <1% No
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and which changed to a 30 base pair sequence in
higher monkeys (Tseng and Green, 1988; Green and
Djian, 1992). For example, pig involucrin has 13 repeats
of 16 amino acids, of which seven are glutamine and
three are glutamic acid residues. Human involucrin has
37 repeats of 10 residues of which three are glutamines
and two are glutamates. Thus the whole human
involucrin protein contains ~25% glutamine and ~20%
glutamate residues (Eckert and Green, 1986).
Presumably, the expansion of these repeat sequences
was driven by the evolutionary benefit of increasing the
number of potential TGase substrate glutamine residues
for cross-linking, and perhaps of lengthening the molecule.
This repeat region is flanked on both the amino and
carboxy termini by domains which have been
remarkably conserved throughout mammalian evolution
and indeed show significant sequence homology to
similar regions on other EDC-encoded CE structural
proteins such as loricrin and the small proline rich
proteins (Gibbs et al., 1993). Involucrin is a rod-like,
elongated protein of ~45 nm long and 1.5 nm in
diameter. Thus involucrin is ideally suited for cross-
bridging widely separated CE components (Yaffe et al.,
1992), although only a small fraction of its 150
glutamines appear to be utilized in vivo (Steinert and

KERATIN FILAMENTS

FILAGGRIN

CYTOPLASMIC
SURFACE

LORICRIN |

SPR 1/SPRz ¢

PROELAFIN =7

CYSTATINA /'
INVOLUCRIN \‘/

PERIPLAKIN ®
DESMOPLAKIN _m

LIPID ENVELOPE

INTERCELLULAR
LIPIDS

Marekov, 1997). The repeat region is mostly o-helical in
humans but other secondary structures have also been
proposed for the prosimian repeats (Downing, 1992).
Expression of involucrin appears at the onset of terminal
differentiation in epithelia (Eckert et al., 1993). In cultured
keratinocytes in vitro, involucrin expression is induced

Figure 1. Schematic model of the structure of the CE and the lipid barrier. Modified from
ref. 27. An initial scaffold 2-3 nm thick is built at the cell periphery by deposition of
involucrin (long green rods) onto periplakin, envoplakin and perhaps desmosomal
components such as desmoplakin. In the CE of the epidermis as shown, the subsequent
reinforcement proteins are composed mostly of loricrin and interconnecting SPRs. In the
CEs of the forestomach, trichohyalin is also used (Steinert et al., 1998b). In the CEs of
other internal stratified squamous epithelia, the reinforcement proteins are mostly SPRs.
In the hair fiber cuticle, other so far uncharacterized cysteine-rich proteins are used
(Zahn et al., 1997). The KIF cytoskeleton is thought to be directly crosslinked to the
cytoplasmic surface of the CE in order to mechanically integrate cornified cell structure
(Candi et al., 1998a). In all cases examined so far, the protein envelope of the CE is
uniformly 10 nm thick (Jarnik et al., 1998). In the epidermal CE, a lipid envelope of
about 5 nm thick is also present, which is formed from a monomolecular layer of
unusually large ceramides (vertical yellow rods). These may serve to interdigitate with
other intercellular corneocyte lipids to complete the skin barrier.

KERATIN FILAMENTS
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by calcitriol (Su et al., 1994), corticosteroids (Cline and
Rice, 1983), phorbol esters (Takahashi and lizuka, 1993),
and Ca®* (Younus and Gilchrest, 1992), by regulatory
elements located within about the first 2.5 kb upstream
of the cap site (Welter et al., 1995; Lopez-Bayghen et
al., 1996; Welter et al., 1996; Crish et al., 1998). CEs
from ‘dry’ epithelia such as human foreskin epidermis
contain about 5% involucrin (Steinert and Marekov, 1997).
However, it is much more abundant in the CEs
recovered from cultured keratinocytes (Rice et al., 1979;
Yaffe et al., 1993; Steven and Steinert, 1994; Robinson
et al., 1996) or internal ‘wet’ epithelia [P.M.S.,
unpublished].

Loricrin accounts for >70% of the protein mass of
epidermal CEs, but rather less (30-50%) in the CEs of
certain internal epithelia such as the esophagus, palate,
buccal mucosa (Hohl et al., 1991a; Yoneda and Steinert,
1993), and is not expressed in many other internal epithelia.
Expression of loricrin is induced by phorbol esters, cell
confluence, and Ca?* (Hohl et al., 1991b; Dlugosz and
Yuspa, 1993), presumably through signals acting through
an AP1 site (DiSepio et al., 1995; Rossi et al., 1998),
and occurs very late during the terminal differentiation
program of these tissues. Loricrin is an insoluble protein
under physiological conditions, apparently due to its high
content of glycine, serine and cysteine: indeed it has the
highest glycine content of any protein known in biology
(Mehrel et al, 1990; Hohl et al., 1991a; Yoneda et al., 1992).
Owing to its high rate of expression and low solubility,
loricrin forms spherical inclusions, called L-bodies in
newborn mouse skin, human foreskin and acrosyringium,
but it is diffusely distributed in the cytoplasm of adult
epithelia (Steven et al., 1990; Ishida-Yamamoto et al.,
1993; Ishida-Yamamoto et al., 1996). Loricrin contains
three glycine rich domains which are thought to form
uniquely flexible glycine loops (Steinert et al., 1991),
interspersed by glutamine-rich motifs and flanked by
lysine- and glutamine-rich amino and carboxy terminal
domains (Mehrel et al., 1990; Hohl et al., 1991a). In vitro
cross-linking experiments using recombinant human loricrin
have demonstrated that the TGase 1 and 3 enzymes
utilize different glutamine and lysine residues, implying
that both enzymes have distinctly complementary and
essential functions in the utilization of loricrin for CE
assembly in vivo (Candi et al., 1995).

Small proline rich proteins (SPRs, cornifins, pancornulins)
are a family of 11-14 closely related proteins. Three
classes of SPRs have been identified: SPR1 (two mem-
bers), SPR2 (8-11 members) and SPR3 (1 member)
(Kartasova and van de Putte, 1988; Kartasova et al.,
1988a; Marvin et al., 1992; An et al., 1993; Gibbs et al.,
1993; Greco et al., 1995; Hohl et al., 1995; Austin et al.,
1996; Kartasova et al., 1996; Steinert et al., 1998a; Song
et al., 1999). The various members of the SPR classes
display wide variations of expression in different epithelia.
For example, SPR1a (comifin o) and certain SPR2 proteins
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are expressed in dry epithelia such as the epidermis;
distinctly different members of the SPR2 class are
expressed in internal epithelia; and SPR3 is abundantly
expressed in mucosal epithelia exposed to mechanical
stress, such as the esophagus and rodent forestomach,
while it is absent in the epidermis (Fujimoto et al., 1993;
Hohl et al., 1995; Steinert et al., 1998b; Song et al., 1999).
However, most members are induced in response to UV
damage and phorbol esters (Kartasova and van de
Putte, 1988; Kartasova et al., 1988b; Gibbs et al., 1990) or
malignancy (Yaar et al., 1995). SPR1 and 2 transcription
is induced by Ca?* through a complex array of interacting
AP1, Sp1, ets and other transcription factors (Fischer et
al., 1996; Sak et al., 1998). All SPRs are built from a
variable number of eight (in SPR1 and SPR3) or nine
(in SPR2) amino acid residue proline-rich repeats. The
number of repeats ranges from three in human SPR2 to
23 in human SPRS3, so that the mass of SPRs varies
between 6 kDa to 25 kDa (Fujimoto et al., 1993; Gibbs
etal., 1993; Austin et al., 1996; Kartasova et al., 1996;
Steinert et al., 1998b; Song et al., 1999). The repeats
are flanked by short glutamine-, lysine- and proline-rich
amino and carboxy terminal domains showing distant
homology to the head and tail regions in involucrin and
loricrin (Gibbs et al., 1993). Recombinant human SPR2
(Candi et al, 1999) and SPR1 (Tarcsa et al, 1998) proteins
have been studied in vitro. Circular dichroism measure-
ments indicate a random coil secondary structure for
the termini, but a limited protein turn conformation for
the repeat motifs. Both are powerful TGase substrates,
and many adjacent glutamine and lysine residues become
cross-linked in vitro and in vivo (Steinert et al., 1998a).
Interestingly different residues on the amino termini are
used by the two enzymes, indicating that both enzymes
are also required for the appropriate assimilation of SPRs
into the CE in vivo. In addition, double cross-linking
experiments have shown that the TGase 3 enzyme first
cross-links the SPRs into short oligomers, which are later
affixed to the CE by the TGase 1 enzyme (Candi et al.,
1999). We have noted a correlation between the amount
of SPRs present in CEs and the presumed requirements
of epithelia for resistance to physical trauma. For
example, trunk epidermis contains only traces of SPRs;
foreskin epidermis contains about 5% SPRs; human
palm/sole or rodent footpad and lip epidermis contain
10-15% SPRs; rodent esophagus and forestomach
epithelia contain >20% SPRs; and human buccal and
gingiva epithelia contain near 50% SPRs. We have
proposed the SPRs serve as cross-bridging proteins
and in this way directly modulate the biomechanical
properties of the CE and the entire epithelium in which
they are expressed (Steinert et al., 1998a; Steinert et
al., 1998b).

Cystatin A (keratolinin) expression is inducible in
cultured keratinocytes by Ca?*, phorbol esters and
forskolin (Takahashi et al., 1997). In epidermis it is
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expressed in the spinous layer (Jarvinen et al., 1987).
Cystatin A is a substrate for epidermal TGases and has
been identified as a minor cross-linked component of
CEs (Zettergren et al., 1984; Takahashi et al., 1992;
Steinert and Marekov, 1997). The protein is a known
cysteine protease inhibitor (Jarvinen et al., 1987;
Takahashi et al., 1994; Shibuya et al., 1995) and it has
been suggested that this feature might be relevant for
the bacteriostatic properties of the skin (Takahashi et
al., 1994).

Elafin (elastase specific inhibitor, SKALP; skin derived
anti-leukopeptidase) is a minor component of CEs from
normal adult epidermis, is transiently expressed in fetal
and neonatal epidermis, but is highly expressed in
wounded or psoriatic skin and in cultured keratinocytes
(Molhuizen et al., 1993; Schalkwijk et al., 1993; Alkemade
et al., 1994; Nonomura et al., 1994; Pfundt et al., 1996).
The protein is translated as preproelafin, which is curtailed
to proelafin after the removal of the 25 amino acid
signal peptide. Proelafin is composed of an amino
terminal 34 amino acid proline-rich sequence
(“cementoin”) and the 57 amino acid long elafin (Wiedow
et al., 1990; Schalkwijk et al., 1991; Saheki et al., 1992;
Sallenave et al., 1993; Wiedow et al., 1993). Though
elafin has potent elastase and proteinase-3 inhibitory
properties (Wiedow et al., 1990; Wiedow et al., 1993),
the biological relevance of this is unknown in
keratinocytes. The fate of proelafin after synthesis is
somewhat obscure, as the protein is stored in secretory
granules and is later extruded from the cells (Pfundt et
al., 1996). However, TGases utilize glutamine residues
in the cementoin sequence as sub-strates (Molhuizen et
al., 1993), and proelafin has been identified as a cross-
linked component of epidermal CEs (Steinert and
Marekov, 1995; Steinert and Marekov, 1997).

Profilaggrin is a major differentiation product of ortho-
keratinizing epithelia such as the epidermis (Gan et al.,
1990), and its gene is encoded in the EDC (McKinley-
Grant et al., 1989). Profilaggrin is a polyprotein consisting
of numerous filaggrin units flanked by distinctive amino
and carboxy terminal domains (Presland et al., 1992;
Markova et al., 1993). Interestingly, the amino terminus
of profilaggrin contains two functional calcium binding
EF hand motifs (Presland et al., 1992; Markova et al.,
1993). Filaggrin is released by proteolysis from profilaggrin
(Presland et al., 1997), and functions to bind keratin
intermediate filaments into tight arrays typically seen in
corneocytes (Dale et al., 1978; Mack et al., 1993). Some
filaggrin becomes cross-linked to CE proteins (Richards
et al., 1988; Steinert and Marekov, 1995; Simon et al.,
1996), presumably together with and at the same time
as the keratins. It has also been proposed that the
amino terminal parts of profilaggrin are also
incorporated into CEs after proteolytic cleavage from
the filaggrin units (Presland et al., 1997).

Keratin intermediate filaments (KIF) are of course the

major protein of the corneocyte, and some keratin proteins
become cross-linked to the peripheral CE during terminal
differentiation (Steinert and Marekov, 1995; Steinert and
Marekov, 1997; Candi et al., 1998a). KIF and their roles
in health and disease have been reviewed in detail else-
where (Parry and Steinert, 1995; Steinert, 1996). In
living nucleated epithelial cells the KIF cytoskeleton is
attached to the cell periphery at desmosomal junctions,
which provides mechanical stability throughout the epi-
thelium (Holbrook and Wolff, 1993; Garrod et al., 1996).
Although the exact details are unknown, the connection
of the KIF to desmosomes occurs through several desmo-
somal proteins, including desmoplakin and envoplakin
(Garrod et al., 1996; Green and Jones, 1996; Fuchs et
al., 1997). In the course of terminal differentiation and
CE formation, the structural integrity of desmosomes is
destroyed at the same time as many normal house
keeping cellular constituents are absorbed. During this
process, KIF become cross-linked to the CE primarily
through a single lysine residue located in the amino-
terminal head domain of the type Il keratins 1, 2e, 5, 6,
typically expressed in stratified squamous epithelia (Candi
et al., 1998a). In this way, the KIF cytoskeleton becomes
integrated mechanically with the CE to form a stable
insoluble structure for the corneocyte.

Desmoplakin is a major intracellular desmosomal plaque
protein. Two isoforms, DPI and DPII, result from alternative
splicing. In stratified squamous epithelia both isoforms
are expressed (Virata et al., 1992). A large body of
evidence indicates that the KIF meet at the site of the
desmosome where they may interact directly or
indirectly through various other intermediary proteins,
with the terminal domains of desmoplakin (Green et al.,
1990; Virata et al., 1992; Kouklis et al., 1994; Garrod et
al., 1996; Green and Jones, 1996; Fuchs et al., 1997).
There is direct evidence from protein sequencing that
desmo-plakin becomes crosslinked to a variety of other
CE proteins, although interestingly, the crosslink
connection with the type Il keratins seems to be
indirectly through other proteins (Steinert and Marekov,
1995; Steinert and Marekov, 1997; Candi et al., 1998a).
Several other desmosomal proteins including
desmoglein 3, desmo-collins 3A/3B, plakoglobin, and
plakophilin were found among proteolyzed CE fragments
(Robinson et al., 1997). However, the sites of isopeptide
bond formation were not identified in them, and the
conclusion that they are in fact integral CE components
awaits verification. Two other proteins, envoplakin and
periplakin, which are structural homologues of
desmoplakin, are located at or between the desmosome
junctions of stratified squamous epithelia (Ruhrberg et
al., 1996; Ruhrberg et al., 1997). These become cross-
linked components of mature CEs, and indeed,
envoplakin seems to mediate linkages between
desmoplakin and KIF (Steinert and Marekov, 1997;
Candi et al., 1998a).
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The S100 proteins are akin to the amino-terminal
domain of profilaggrin in that they contain two calcium
binding EF hand motifs (Engelkamp et al., 1993; Volz et
al., 1993; Moog-Lutz et al., 1995; Mischke et al., 1996).
Many of their genes are located in the EDC region of
chromosome 1g21. Among these, S100A10 (calpactin,
light chain) and S100A11 (S100C, calgizzardin) are
expressed and incorporated into CE in cultured keratino-
cytes (Robinson et al., 1997). On binding calcium, these
proteins expose hydrophobic domains on their surface and
bind to several proteins, including annexin | (Seemann
et al., 1996).

Annexin | (lipocortin 1) is a member of the multigene
family of annexins expressed in all eukaryotic kingdoms
except fungi (Morgan and Fernandez, 1997). Annexins
are structurally defined by an ancient conserved domain
of four homologous repeats responsible for ion channel
activity and calcium dependent binding to anionic phos-
pholipids, the cytoskeleton and extracellular matrix proteins
(Liemann and Lewit-Bentley, 1995). Annexin | is abundantly
expressed in most tissues, although its precise role
remains to be elucidated. Annexin | was found to be a
component of CEs from cultured keratinocytes (Moore
and Sartorelli, 1992; Robinson et al., 1997), a finding
not yet corroborated by in vivo data. As annexins | and
Il were shown to associate with S100 proteins on
calcium binding (Mailliard et al., 1996; Seemann et al.,
1996), this mechanism may play a role in docking
certain early CE protein components to the plasma
membrane (Robinson and Eckert, 1998).

The order of CE assembly

As CEs consist of many different proteins, the relative
ratios of which vary widely between different epithelia, it
would be parsimonious to assume that these proteins are
cross-linked to one another in a random fashion, when
keratinocyte Ca* concentrations reach sufficiently high
levels to activate TGases (Michel et al., 1987; Reichert et
al., 1993). This random copolymerization, or so-called
‘dustbin’ hypothesis, does not explain the structure of
CE, and moreover, seems inconsistent with the known
orderly expression of the various protein components.
Several studies indicate that the CE is formed by sequen-
tial deposition of consecutively-expressed proteins,
apparently starting with the fixation of involucrin on the
intracellular surface of the plasma membrane (Eckert et
al., 1993; Steinert, 1995; Steinert and Marekov, 1997).
Initially the CE appears as a thickened electron dense
band between the desmosomes, which later overlayers
the desmosomal attachment plaques, which
presumably are not only masked but also degraded during
the terminal differentiation process (Green and Jones,
1996). Expres-sion studies have shown that involucrin
deposition at the cell periphery precedes that of most
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other CE proteins (Rice et al., 1979; Watt and Green,
1981; Simon and Green, 1984; Crish et al., 1993; Murthy
et al., 1993; Yaffe et al., 1993; de Viragh et al., 1994;
Jarnik et al., 1998; Song et al., 1999). Further,
immunogold labeling and ultrastructural data have
suggested that a monomolecular layer of involucrin is
first deposited as a scaffold (Steinert and Marekov,
1997; Jarnik et al., 1998). In addition, sequential
digestion and protein sequencing of foreskin CEs has
revealed that involucrin is cross-linked to other
peripheral CE proteins including desmoplakin, envoplakin,
and perhaps periplakin. Finally, we have shown that
involucrin is covalently bound to ®-hydroxyceramides
from the exterior surface of the CE, indicating that
involucrin must have been deposited in the intimate
vicinity of the cell membrane at an early time (Marekov
and Steinert, 1998). A transporting system has been
proposed for positioning involucrin to the cell membrane
(Robinson and Eckert, 1998). This model hypothesizes
cross-linking of CE building blocks first to S100
proteins, which then dock to annexins to attach to the
inner memb-rane surface in a calcium and phospholipid
dependent manner. An alternative model has been
proposed. We (Nemes et al., 1999) have shown that
involucrin can bind to the plasma membrane in a
calcium and phosphatidyl-serine dependent manner
and serve as substrate for membrane-bound TGase 1.
Thus involucrin and TGase 1 might form the initial
scaffold of the CE without the need for any other
transporter or organizer proteins.

Current models suggest that a monomolecular layer of
involucrin is then used as a scaffold for the subsequent
attachment of other ‘reinforcement’ proteins (Hohl, 1990;
Reichert et al., 1993; Eckert et al., 1997; Steinert and
Marekov, 1997; Jarnik et al., 1998). In the case of the
epidermis, these reinforcement proteins include loricrin
and SPRs, which together comprise about 85% of the total
mass of the CE (Steinert and Marekov, 1997; Steinert et
al., 1998b). The forestomach also includes significant
amount of trichohyalin (Steinert et al., 1998b). The CEs
from other internal epithelia which do not express loricrin
have much higher contents of SPRs instead [P.M.S.,
un-published]. The CEs of the hair cuticle use as yet
unknown cysteine-rich proteins (Zahn et al., 1997).
These differ-ences presumably reflect the different
barrier function requirements of different epithelia
(Steinert et al., 1998b). In addition, there is considerable
functional redundancy in CE proteins and their
subsequent cross-linking. For example, the complete
lack of loricrin in the knock out mouse model resulted in
a surprisingly mild phenotype: newborns had an
abnormal epidermis with diminished barrier function, but
this improved by five days after birth. This improvement
was concurrent with increased expression of SPRs (de
Viragh et al., 1997).
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The mortar

Terminal differentiation of keratinocytes is accompanied
by vigorous lipid metabolism and synthesis of
keratinization-specific lipids in the granular layer
(Swartzendruber et al., 1989; Wertz et al., 1989a;
Schurer et al., 1991; Wertz and Downing, 1991;
Downing et al., 1993; Elias, 1996). Newly synthesized
lipids are accumulated and temporarily stored in small
cytoplasmic inclusions known as lamellar bodies, in
which the lipids are arranged as multilayered stacks
(Landmann, 1980). These layers are held together by
extremely long w-acylceramides spanning over several
lipid layers (Abraham et al., 1988). The lamellar body lipids
consist predominantly of acylated/glucosylated/hydroxy-
lated ceramides, cholesterol and its acyl and sulfate esters,
and free fatty acids (Schurer et al., 1991; Downing et al.,
1993; Elias, 1996). In the upper granular layer the lamellar
bodies are extruded into the intercellular space, forming
broad multilamellar lipid sheets (Landmann, 1986). Ultra-
structural examination of lamellar bodies as well as inter-
corneocyte lipids display a parallel pattern of electron
dense and lucent bands (Madison et al., 1988; Swartzen-
druber et al., 1995). The dense bands correspond to the
polar head groups of the lipid layers, while lucent bands
are occupied by the apolar hydrocarbon chains (Swar-
tzendruber ef al., 1989). On extrusion, the bounding
membrane of the lamellar bodies is fused with the plasma
membrane of the keratinocytes (Ricardo Martinez and
Peters, 1971). This process apparently coincides with
the initiation of CE assembly inside the cells. One minor
but important component of the extruded lipids are the
w-hydroxyceramides, which become covalently
attached to the outer surface of the protein envelope of
the CE forming an ~5 nm thick lipid envelope coat
surrounding each corneocyte (Swartzendruber et al.,
1987; Wertz and Downing, 1987a; Wertz et al., 1989b).
The ceramides are attached by way of ester bonds to
glutamic acid and glutamine residues of several CE
proteins, including involucrin, envoplakin and periplakin
(Wertz et al., 1989b; Marekov and Steinert, 1998). The
protein-bound w-hydroxyceramides are built from
sphingosine coupled to highly saturated, uniquely long
(C30-36) chain fatty acids having a chain terminal (“®”)
hydroxyl group (Wertz and Downing, 1991). This
functional group is presumably involved in the ester
bond formation, although incomplete conversion of
protein-bound ceramides to their acetonides by acidic
acetone indicated that sphingosine hydroxyls may also
be used (Wertz and Downing, 1987a).

Isolation and sequencing of ceramide-peptide ester
adducts from proteolyzed foreskin epidermal CEs located
possible lipid attachment sites in involucrin and desmosomal
proteins. These included both glutamate and glutamine
residues (Marekov and Steinert, 1998). Thermodynamic

considerations necessitate high-energy intermediate
formation to drive formation of ester bonds in biology.
Ester formation on glutamate residues presumably involves
transferases using nucleotide triphosphate as the energy
source, and indeed many transferases are present in
lamellar body exudate (Downing et al., 1993; Elias, 1996).
However, glutamines are an intrinsically activated
derivative of glutamic acid and the release of ammonia
from its carboxamido groups provides sufficient entropy
increase to drive ester formation. TGases (precisely:
glutamine-amine aminotransferases) are known to utilize
the lysis of glutamine carboxamido moieties to drive
thermodynamically difficult reactions, including activation
of alcohol moieties to form esters (Gross and Folk, 1974;
Folk and Finlayson, 1977; Lorand and Conrad., 1984).
Thus we propose that TGases may also participate in
lipid envelope formation by covalent attachment by
esterification of w-hydroxyceramides to glutamines of
the protein envelope.

The long chain ceramides comprising the lipid envelope
attached covalently to the surface of the CE function in
large part by interdigitation with the intercorneocyte lipids
in a Velcro-like fashion. As part of its obviously important
water barrier function, this attachment presumably permits
‘fixation’ of the cornified cells after disappearance of
desmosomal linkages, and may have a role in inhibiting
the clumping, vacuolization or other derangement of the
lipid lamellae (Wertz et al., 1989a; Wertz, 1997), especially
in hair cuticle cells (Zahn et al., 1997).

Defects of the skin barrier

Broken bricks

More than 10 different diseases involving the genes
encoding KIF (which comprise the bulk of epithelial
cells) are now known and have been described in detail
elsewhere (Parry and Steinert, 1995; Steinert, 1996).
Included in these is a novel mutation involving the loss
by mutation of a single lysine residue in the head
domain of the keratin 1 gene, resulting in non-
epidermolytic palmar-plantar keratoderma (Unna-Thost
disease). This disease is characterized by pathological
thickening of the stratum corneum of the palms and soles
(tylosis) (Kimonis et al., 1994). The lysine residue has
been shown to be essential for the crosslinking of KIF to
CE structural pro-teins, and its loss appears to interfere
with the orderly structure of the corneocyte (Candi et al.,
1998a).

In addition, a few genetic diseases caused by
defects in the genes encoding either CE structural
proteins or TGase 1 are now known. Defective forms of
loricrin dis-rupt the terminal differentiation program of
keratinocytes and cause skin diseases. Frameshift
mutations, resulting in loss of key glutamine and lysine
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residues for cross-linking, and expression of an
aberrantly highly positively charged protein which
accumulates in the nucleus instead, cause the autosomal
dominant diseases Vohwinkel’s keratoderma
(keratoderma hereditaria mutilans (Vohwinkel, 1929; Gibbs
and Frank, 1966; Korge et al., 1997; Lam et al., 1997) or
progressive symmetric erythrokeratoderma (Ishida-
Yamamoto et al., 1997). In these diseases the CE is
thinner than normal and contains less loricrin (Ishida-
Yamamoto et al., 1997; Korge et al., 1997; Lam et al.,
1997). Patients with Vohwinkel's keratoderma have diffuse
palmoplantar hyperkeratosis with small “honeycomb”
depressions and progressively develop constricting bands
on their fingers. Irregularly shaped keratoses on the
backs of feet and hands, elbows and knees and
variable deafness are also part of the syndrome.
Progressive symmetric erythrokeratoderma is
characterized by wide-spread erythematous keratotic
plaques (Ishida-Yamamoto et al., 1998).

Genetic defects of the TGM1 gene encoding TGase
1 cause the devastating life threatening disease
lamellar ichthyosis, which manifests as large brown
plate-like scaling throughout the body, accompanied by
ectropion and/or eclabium, scarring alopecia and
diminished skin barrier function (Huber et al., 1995a;
Russell et al., 1995). Several mutations have been
identified which cause non-sense, frameshift or splice
site changes affecting either the active site of the
enzyme (Parmentier et al., 1995; Huber et al., 1997;
Petit et al., 1997; Candi et al., 1998b) or its
posttranslational proteolytic processing (Candi et al.,
1998b). In all of these cases, the amount of TGase 1
activity is greatly diminished or lost (Hohl et al., 1998;
Raghunath et al., 1998). Several of these phenotypic
changes are also apparent in the mouse TGM1 gene
knock-out model (Matsuki et al., 1998). Thus the TGase
2, 3 and X enzymes also co-expressed in the epidermis
are unable to replace the missing TGase 1 activity. Inter-
estingly, however, other internal epithelia which also
express TGase 1 and other TGases are not affected in
lamellar ichthyosis. Thus it is possible that debilitating
epidermal involvement may be due to the inability of
TGase 1 to attach ceramide lipids to the CE. In addition,
there are a variety of other autosomal recessive ichthyoses
that are unlinked to the TGM1 locus, indicating that defects
in other genes cause a phenotype similar to lamellar
ichthyosis (Huber et al., 1995b; Bale et al., 1996;
Hennies et al., 1998). One possibility is that these
genes encode proteins involved in the posttranslational
proteolytic activation of the TGase 1 enzyme (Candi et
al., 1998b). Finally, to date, no disease has been linked
to any of the other TGase genes expressed in epithelia.

Weak mortar

Production of an effective lipid barrier in the skin (and
other epithelia) involves an extraordinarily complex set
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of machinery and a very large (indeed, unknown) number
of genes. Generally, deficiencies in barrier function result
in an ichthyosiform disease. Even minor depletion of the
lipid barrier causes dry skin, a common manifestation of
which is the scaling caused by exaggerated application
of hygienic detergents. Essential fatty acid deficiency
causes excess scaling in rats (Wertz et al., 1987b) and
also in humans on long-term intravenous alimentation
lacking linolate (Friedman, 1986). The systemic application
of HMG-CoA reductase inhibitors impedes epidermal
cholesterol synthesis and might cause ichthyosiform
symptoms (Williams, 1992). Excessive depletion of the
cornified layer triggers hyperproliferation often leading
to abnormal scaling (Fartasch, 1997).

Many subtypes of ichthyoses have been distinguished on
the basis of ultrastructural (Anton-Lamprecht, 1994) or
other criteria based on abnormal intercellular deposition
of apolar lipids, cholesterol, polar lipids, etc (Williams
and Elias, 1987; Traupe, 1989). The exact genetic defect
in the vast majority of these classified diseases is not yet
known, although some have been identified. As discussed
above, lamellar ichthyosis is caused by mutations in the
TGM1 gene encoding the TGase 1 enzyme; the disease
may result from the inability to both crosslink structural
proteins and attach ceramides. X-linked ichthyosis is
due to cholesterol sulfate accumulation owing to a
deficiency of the arylsulfatase C/cholesterol sulfatase
gene (Shapiro et al., 1978; Kubilus et al., 1979; Baden
et al., 1980). How abnormally high levels of cholesterol
sulfate cause barrier dysfunction has not yet been
clearly elucidated (Zettersten et al., 1998), although the
TGM1 gene may be involved (Kawabe et al., 1998).
Some ichthyoses are the direct result of genetic defects
of lipid metabolism, as exemplified by Refsum’s disease
(phytanic acid accumul-ation owing to phytanoyl-CoA
hydroxylase deficiency) (Steinberg et al., 1978; Jansen
et al., 1997), and Sjogren-Larsson’s syndrome
(pathological lipid metabolism owing to fatty aldehyde
dehydrogenase deficiency (De Laurenzi et al., 1996; De
Laurenzi et al., 1997). Similarly, maple syrup urine
disease in cattle is caused by an inherited deficiency in
the enzyme branched chain alpha-ketoacid
dehydrogenase, which leads to accumulated branched
chain amino acids (valine and isoleucine). A hair fiber
barrier defect is also evident because of loss of a key
lipid, 18-methyleicosanoic acid, which is a downstream
metabolite of the enzyme (Zhang et al., 1990).

Conclusion

In recent years substantial progress has been made to
identify the protein and lipid components involved in skin
barrier function. Nevertheless, several major problems
still await resolution in order to provide a complete
understanding of the biochemical mechanisms of barrier
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formation as well as the temporal and geometric interac-
tions of the individual components. Thus, much additional
basic research is essential to understand the bases of
genetic diseases barrier function before rational therapy
procedures can be developed.
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