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Missing heritability: is the gap closing? An analysis of
32 complex traits in the Lifelines Cohort Study

Ilja M Nolte*,1,11, Peter J van der Most1,11, Behrooz Z Alizadeh1, Paul IW de Bakker2,3, H Marike Boezen1,
Marcel Bruinenberg4, Lude Franke5, Pim van der Harst6, Gerjan Navis7, Dirkje S Postma8, Marianne G Rots9,
Ronald P Stolk1, Morris A Swertz5, Bruce HR Wolffenbuttel10, Cisca Wijmenga5 and Harold Snieder*,1

Despite the recent explosive rise in number of genetic markers for complex disease traits identified in genome-wide association

studies, there is still a large gap between the known heritability of these traits and the part explained by these markers. To

gauge whether this ‘heritability gap’ is closing, we first identified genome-wide significant SNPs from the literature and

performed replication analyses for 32 highly relevant traits from five broad disease areas in 13 436 subjects of the Lifelines

Cohort. Next, we calculated the variance explained by multi-SNP genetic risk scores (GRSs) for each trait, and compared it to

their broad- and narrow-sense heritabilities captured by all common SNPs. The majority of all previously-associated SNPs

(median=75%) were significantly associated with their respective traits. All GRSs were significant, with unweighted GRSs

generally explaining less phenotypic variance than weighted GRSs, for which the explained variance was highest for height

(15.5%) and varied between 0.02 and 6.7% for the other traits. Broad-sense common-SNP heritability estimates were

significant for all traits, with the additive effect of common SNPs explaining 48.9% of the variance for height and between 5.6

and 39.2% for the other traits. Dominance effects were uniformly small (0–1.5%) and not significant. On average, the variance

explained by the weighted GRSs accounted for only 10.7% of the common-SNP heritability of the 32 traits. These results

indicate that GRSs may not yet be ready for accurate personalized prediction of complex disease traits limiting widespread

adoption in clinical practice.
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INTRODUCTION

In recent years, many large international consortia have performed
meta-analyses of genome-wide association studies (GWASs), identify-
ing numerous associations of common genetic variants (ie, single
nucleotide polymorphisms (SNPs)) with a wide variety of diseases and
traits.1,2 The rapid increase in the number of SNPs identified provides
an opportunity to systematically examine the quantitative impact of
these common genetic variants, individually or collectively as part of a
genetic risk score (GRS). Such GRSs offer promise for personalized
prediction of complex disease risk with potential future application in
clinical practice.
Lifelines is a multi-disciplinary population-based prospective cohort

study examining the health and health-related behaviors of 167 729
persons living in the North East region of the Netherlands in a three-
generation family design.3,4 The general aim of the Lifelines Cohort
Study is to unravel how life-time exposure to environmental, and
genetic risk factors and their interaction influences individual suscept-
ibility to multifactorial diseases. Lifelines not only provides an in-

depth characterization of the biomedical, socio-demographic, beha-
vioral, physical and psychological factors that contribute to health and
disease in the general population, it also employs a broad disease-and
organ-overriding phenotypic characterization of its participants allow-
ing it to validly address questions concerning the multi-morbidity that
occurs with ageing, rather than focusing on single-disease conditions.
Its representativeness for the population in the Northern Netherlands
was recently shown5 and the age-related multi-morbidity was
documented.6 Thus, Lifelines is particularly suited to investigate causes
of morbidity across disease domains. Along the same lines, genotype–
phenotype associations were assessed for multiple disease domains in
the current paper.
The aim of this study was to test the validity and reliability of the

Lifelines Cohort Study for genetic research of a wide range of complex
disease traits, and to gauge whether the ‘heritability gap’ of these traits
is closing. To this end, we collected dedicated data on a wide variety of
phenotypes and performed genome-wide genotyping on more than
13 000 unrelated individuals. We selected 32 continuous traits from
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five broad disease areas (musculoskeletal, cardiovascular and renal,
metabolic, hematologic and inflammatory, and pulmonary), for which
we compiled a list of genome-wide significantly associated index SNPs
based on the GWAS catalog2 and performed an extensive literature
search. For each of the 32 traits we (i) tested whether associations with
previously identified index SNPs could be replicated in the Lifelines
Cohort; (ii) determined how much of the phenotypic variance could
be explained by the known variants when combined in a GRS;7,8 and
(iii) calculated the percentage of variance explained by additive (h2SNP)
and dominance variation (δ2SNP) at all common SNPs, because
estimates of the narrow-sense (h2SNP) and the broad-sense heritability
(H2

SNP= h2SNP+δ
2
SNP) captured by SNPs9 provide an upper bound to

the explanatory power of genetic variants that can be discovered by
GWAS.9–11

MATERIALS AND METHODS

Trait and SNP selection
Our selection of traits was based on two criteria: (i) it had to be a continuous
trait measured in the baseline visit of the Lifelines Cohort Study, and (ii) a meta-
GWAS on the trait including at least 10 000 European individuals had to have
been published. We searched the GWAS catalog1,2 for original papers describing
or meta-analyzing GWASs of the selected traits (date: 01/14/2015). In addition,
we performed a literature search to identify papers that used a gene-centric
genotyping platform for association analysis (Figure 1). From the resulting list of
publications, we selected the paper(s) with the largest sample size of European
individuals (at least 10 000 individuals). This led to selection of multiple papers
for several traits, if the sample sizes of these papers were similarly large, or there
were additional papers using a gene-centric array (Table 1). From these papers
we identified index SNPs that were significantly associated with the phenotypes
of interest. The criterion for statistical significance depended on the genotyping
platform. For analyses based on a genome-wide SNP array, the standard
genome-wide significance threshold was used (P= 5× 10− 8). For gene-centric
genotyping platforms, we used the threshold of significance from the original
papers. Preferably, statistical significance was assessed based on the P-value of
the combined analysis of discovery and replication samples. If a study did not
include a P-value for the combined analysis, we used the P-values from the
discovery phase. For each selected SNP, we recorded the effect size (beta
+direction of effect), standard error, P-value, and effect allele, when available.
For the effect sizes, we used the effect size derived from the combined analysis of
discovery and replication cohorts if given. If not, we used the effect size in the
replication cohort if available, and otherwise that of the discovery. If multiple
papers contributed SNPs for a particular trait and they used different units,
transformations or meta-analysis methods, we transformed the effect sizes of the
studies to make them comparable.

Genotyping and imputation
A total of 15 638 presumably unrelated individuals of the Lifelines Cohort
Study were selected for genome-wide genotyping on the Illumina CytoSNP 12
v2 array and called in GenomeStudio (Illumina, San Diego, CA, USA). A pre-
imputation quality control was carried out in PLINK.12 SNPs with a call rate
o95%, Hardy–Weinberg equilibrium P-value o0.0001, or minor allele
frequencyo1% were excluded, as were samples with a sex mismatch, deviating
heterozygosity (44 s.d. from mean), non-European ancestry, a call rateo95%,
or that were duplicates or first-degree relatives. A total of 268 407 SNPs and
13 436 samples remained after quality control. Imputation was carried out
using Beagle v3.1.0(ref. 13) with the HapMap Phase 2 CEU reference panel
(release 24, build 36).14 To determine the genetic relationship matrices needed
for the common-SNP heritability estimation (see below) another imputation
was performed using IMPUTE2(ref. 15) with the HapMap Phase 3 reference
panel (release 2, build 36), as the HapMap Phase 3 SNP set was optimized to
capture common genetic variation in the human genome.16 This latter imputed
dataset was converted to best-guess genotypes: the most likely genotype was
assigned for each SNP and for each individual when it had a probability 40.9,
otherwise the genotype was set to missing for that individual. After conversion,
SNPs with a call rate o0.95 were excluded. This yielded a set of 874 760 SNPs.

Statistical analysis
Correction for the Lifelines’ effect size. To obtain unbiased estimates, the
validation cohort (ie, Lifelines) needs to be completely independent of the
discovery sample.7 As some of the selected papers included Lifelines data in
their meta-analysis, we corrected their results for the ‘Lifelines effect’ by
recalculating the SNP’s effect sizes (betas) and standard errors (SEs) using
inverse versions of the formula for an inverse-variance fixed-effects meta-
analysis:

bcorrected ¼
1

SE2meta
� bmeta

� �
� 1

SE2Lifelines
� bLifelines

� �
1

SE2meta
� 1

SE2Lifelines

and

SE corrected ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1

SE2meta
� 1

SE2Lifelines

s
;

where βmeta and SEmeta are the beta and SE of the SNP in the original meta-
GWAS paper and βLifelines and SELifelines are the beta and SE in the Lifelines
Cohort, which have been provided to the meta-GWAS consortium. With the
corrected beta and SE, we recalculated the P-value. If a SNP no longer met the
significance threshold of the original paper, it was excluded.

Only independently associated SNPs were included in our study. If a study did
not test for independence between identified SNPs at a locus for the same trait, or
if SNPs from multiple studies were included for a single trait, we calculated linkage
disequilibrium between the SNPs in the Lifelines dataset. SNP pairs with an
r2o0.1 were considered to be independent. If multiple dependent SNPs in a locus
were reported in a single paper, we selected the most significant one. When
multiple papers reported different, dependent SNPs in the same locus for the same
trait, we selected the SNP from the study with the largest sample size.

Association analysis. Each trait was associated with the individual SNPs selected
for that trait, as well as with two GRSs: the unweighted GRS, ie, the sum of the
risk allele dosages of selected SNPs; and the weighted GRS, ie, the sum of the risk
allele dosages of selected SNPs weighted by the corresponding effect size from the
literature (if applicable corrected for the Lifelines’ effect size). To determine
whether the inclusion of SNPs with low imputation quality in the GRSs
contribute to explained variance, we repeated the analyses for both unweighted
and weighted GRS using only SNPs imputed with high quality (R240.5) in
Lifelines. Association was tested using linear regression in R (rms package v4.2-
0).17,18 For each of the traits, we used the same unit, transformation, exclusion
criteria and covariates as described in the original papers (Table 1) to achieve
exact replication. Details on the trait measurements, which were all based on
either the physical examination or biomaterial collection at the baseline visit
of Lifelines, have been described previously.4 Ten principal components were
added as covariates to correct for population stratification. The genome-wide
significant SNPs from the literature were considered replicated in Lifelines if they
showed a one-sided P-value o0.05 and the same direction of effect. We chose a
significance threshold of 0.05 because the selected SNPs are firmly established
associated variants and hence no multiple testing correction was applied.
To determine the percentage of variance explained (R2) by the GRS, we
compared nested models (including covariates) with and without the GRS and
calculated the difference in R2 between them. The GRS R2 values used in the
remainder of the paper refer to this difference in R2.

Common-SNP heritability. Genomic-relatedness-matrix restricted maximum
likelihood was performed using the genome-wide complex trait analysis
(GCTA) software package11 to determine the percentage of variance that can
be attributed to common SNPs, ie, the common-SNP heritability. Only
unrelated individuals (estimated pairwise relationship o0.05) were included
in this analysis (max N= 10 234). We also estimated the dominance compo-
nent using a recent extension of GREML.9 The variance explained by additive
and dominance variation at all common SNPs are defined as h2SNP= σ2A/(σ

2
A

+σ2D+σ
2
e) and δ2SNP= σ2D/(σ

2
A+σ

2
D+σ

2
e), respectively, where h2SNP is inter-

preted as the narrow-sense heritability captured by SNPs and H2
SNP= h2SNP

+δ2SNP as the broad-sense heritability captured by SNPs. Please note that H2
SNP

as defined here does not include an epistatic component, which is expected to
be small.9
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RESULTS

Trait selection
Thirty-two traits fulfilled our criteria, representing five main systems
or disease areas that are the focus of Lifelines: musculoskeletal,
cardiovascular and renal, metabolic, hematologic and inflammatory,
and pulmonary function. Descriptive statistics for the 32 traits and

demographic variables in our cohort are shown in Supplementary
Table 1.

SNP selection
Figure 1 shows the results of the paper and SNP selection from the
literature for the 32 traits of interest. From the GWAS catalog2,19 and

Figure 1 Flow diagram showing the paper and SNP selection process of known SNP-phenotype associations for the 32 traits assessed in this study. For some
traits multiple papers were selected (Table 1) if sample sizes of several GWAS papers were similarly large, or there were additional papers using a gene-
centric array.
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the successive literature search, we identified 243 and 15 papers using
genome-wide and gene-centric genotyping platforms, respectively.
After filtering for ethnicity, sample size, and relevance/suitability,
29 papers (of which 18 used GWAS data, 7 used gene-centric chip

data, and 4 used a combination) were selected as sources of known
SNPs for our 32 traits. From these papers, we identified 1709 SNP-
phenotype associations. A final number of 1442 index SNP-phenotype
associations were included in our analyses (Figure 1; Supplementary

Table 1 List of the 32 selected continuous disease traits in Lifelines from five broad disease areas and details on their transformations,

covariates and exclusions used for genetic analysis

Trait (unit) Abbreviation Transform Covariates Excl. References

Anthropometrics
Body mass index (kg/m2) BMI INR Sex, age, age2 30a,31

Height (cm) Height Z-scores Sex, age 22a,32

Waist–hip ratio WHRadjBMI INR Sex, age, BMI 33a,34

Cardiovascular and renal
Systolic blood pressure (mmHg) SBP b Sex, age, age2, BMI c 35,36a,37a

Diastolic blood pressure (mmHg) DBP b Sex, age, age2, BMI c 35,36a,37a

Heart rate (bpm) HR Sex, age, age2, BMI d 38a

PR interval (ms) PR Sex, age, height, BMI, HR, SBP e 39

QRS interval (ms) QRS Sex, age, height, BMI f 40

QT interval (ms) QT Sex, age, HR g 41a

Serum creatinine (μmol/l) Creat Log10 Sex, age 42

Estimated glomerular filtration rate

(creatinine, ml/min per 1.73 m2)

eGFRcrea ln Sex, age 43

Urinary albumin/creatinine ratio (mg/g) UACR ln Sex, age 44

Serum urate (mg/dl) Urate Sex, age 45a

Metabolic
Alkaline phosphatase (IU/l) ALP Log10 Sex, age 46

Alanine transaminase (IU/l) ALT Log10 Sex, age 46

Gamma-glutamyl transferase (IU/l) GGT Log10 Sex, age 46

Fasting glucose (mmol/l) FG Sex, age h 47,48

Glycated hemoglobin (%) HbA1c Sex, age i 49

HDL cholesterol (mg/dl) HDL INR Sex, age, age2 LLD 50

LDL cholesterol (mg/dl) LDL INR Sex, age, age2 LLD 50

Total cholesterol (mg/dl) TC INR Sex, age, age2 LLD 50

Triglycerides (mg/dl) TG INR Sex, age, age2 LLD 50

Hematology and inflammation
C-reactive protein (mg/l) CRP ln Sex, age 51

Hemoglobin (g/dl) Hb Sex 43 s.d. 52a

Mean corpuscular volume (fl) MCV Sex 43 s.d. 52a

Mean corpuscular hemoglobin (pg) MCH Sex 43 s.d. 52a

Red blood cell count (1012/l) RBC Sex 43 s.d. 52a

White blood cell count (103/ml) WBC Sex, age 43 s.d. 53

Platelet count (109/l) PLT Sex, age 46 s.d. 54a,55

Lung function
Forced expiratory volume in 1 s (ml) FEV1 INR Sex, age, age2, height, smoking 56

Forced vital capacity (ml) FVC age, age2, sex, height, height2, weight, smoking 57a

FEV1/forced vital capacity FEV1/FVC INR Sex, age, age2, height, smoking 56

Abbreviations: Excl., exclusions; ln, natural logarithm; INR, inverse normal of residuals; LLD, lipid-lowering drugs (ATC C10); s.d., standard deviation; s, second.
aResults of these papers were corrected for the effect of Lifelines for the current study, because Lifelines participated in the original meta-GWAS.
bFor individuals who took antihypertensive or blood pressure lowering medication (ATC C02, C03, C07, C08, or C09) 10 mmHg was added to their DBP and 15 mmHg to their SBP.
cIndividuals with a history of myocardial infarction or heart failure, coronary artery disease, a bypass or dotter treatment, or a missing DBP/SBP measurement.
dIndividuals with atrial fibrillation (missing PR interval), a history of myocardial infarction or heart failure, or drugs of the ATC categories C01AA05, C07, and C08 (calcium-antagonists, beta-
blockers, and digoxin).
eIndividuals with atrial fibrillation (missing PR interval), a history of myocardial infarction or heart failure, use of a pacemaker, drugs of the ATC categories C01B and C01AA05 (class I and III
blocking medication and digoxin), or pregnant females.
fIndividuals with atrial fibrillation (missing PR interval), a history of myocardial infarction or heart failure, use of a pacemaker, or drugs of the ATC category C01B (class I and III blocking
medication).
gIndividuals with atrial fibrillation (missing PR interval), a high (4120 ms) or absent QRS interval, use of a pacemaker, drugs of the ATC categories C01B, C07, C08, and C01AA (class I–IV anti-
arrhythmatics and digitalis), or pregnant females.
hIndividuals with diagnosed diabetes or receiving diabetes treatment or antidiabetic drugs (ATC A10), non-fasting samples, or pregnant females.
iIndividuals with diagnosed diabetes or receiving diabetes treatment or antidiabetic drugs (ATC A10), high fasting glucose (≥7 mmol/l), non-fasting samples, or pregnant females.
We use letters instead of numbers for the footnotes, as using numbers would likely corrupt any attempt to copy data from the reference column as well as cause confusion for the exponential values
used in the units and covariates columns.
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Table 2) after exclusion of the following associations: 55 were not
statistically significant according to our criteria, for 35 the respective
SNP was not present in the Lifelines HapMap Phase 2 imputed
data, 106 lost statistical significance after correcting the meta-GWAS
results for the effect size of Lifelines because Lifelines was part of the
meta-GWAS (see Materials and Methods), and 73 were in linkage
disequilibrium (LD) with another SNP in the SNP list. Some index
SNPs were associated with multiple traits; the number of SNPs
included in our analyses was 1307, of which 967 (74%; accounting
for 1057 SNP-phenotype combinations) had a high imputation quality
(R240.5) in the Lifelines Cohort.

Direct SNP replication
Of the 1442 index SNP-phenotype associations that were tested,
865 (60%; median per trait= 75%, interquartile range= 59.8–88.2%)
reached statistical significance (Table 2; Supplementary Table 2).
When considering only high-quality imputed SNPs, the replication
rate increased to 66.2% (700/1057; median= 83.8%, interquartile

range 63.6–98%). None of the SNPs had a significant effect in the
opposite direction, if we would have used a two-sided test. Further-
more, of the non-replicated SNP the direction of effects were
highly consistent with the directions from literature. A median of
86.1% (interquartile range 75–100%) of all non-replicated SNPs per
trait showed a direction of effect that was consistent with the
literature (100% (85.6–100%) for high-quality SNPs; Supplementary
Table 3). The replication rates decreased with increasing sample
size of the GWAS discovery from which the SNPs were selected,
whereas the percentages of non-significant SNPs with a consistent
direction of effect increased (Supplementary Figure 1). The
Lifelines’ effect sizes correlated well with those from the literature (if
applicable, after correction for the Lifelines’ effect size; Supplementary
Figure 2).

Genetic risk score analysis
The number of index SNPs incorporated in the GRSs ranged from 0
(for UACR) to 476 (for height) when only high-quality SNPs were
used, and from 1 (for UACR) to 635 (for height), when all SNPs
were used (Table 3; Supplementary Table 4). All GRSs were
significantly associated with their respective traits. In general,
inclusion of low-quality SNPs in the GRS resulted in an increase
in phenotypic variance explained by the GRS. For the weighted GRS
built from all SNPs, the median of the relative increase was 10.5%
(interquartile range= 3.9–19.9%) and for the unweighted GRS it
was 11.7% (3.4–20%) compared the GRSs based on only high-
quality SNPs.
The most significant GRS was the weighted GRS constructed from

all SNPs for height (Po1× 10− 320), which explained 15.52% of the
phenotypic variance. The percentages of explained variance for the
other traits ranged between 0.02% (FVC) and 6.67% (HDL). For all
but four traits, the weighted GRS model was more significant and
explained more phenotypic variance than the unweighted model
(Table 3). For the exceptions (BMI-adjusted WHR, heart rate, HbA1c,
and FVC) the numbers of SNPs included in the GRSs were small and/
or the percentage of variance explained was low.

Common-SNP heritability
The broad-sense common-SNP heritability estimates were statistically
significant for all 32 traits except for body mass index-adjusted waist–
hip ratio (Table 3). The percentage of phenotypic variance that could
be explained by the additive effect of common SNPs was highest for
height (48.9%) and ranged from 5.6 to 39.2% for the other traits. The
dominance effects, on the other hand, were uniformly small (0–1.5%)
and not significant.

DISCUSSION

In this study, we investigated in over 13 000 participants of the
Lifelines Cohort Study to which extent the heritability of 32 complex
traits can be explained by previously reported, genome-wide signifi-
cantly associated SNPs. We first demonstrated that the majority of
previously reported SNP-phenotype associations (median= 75%)
could be replicated and that there was high enrichment of effects in
the right direction for the non-replicated ones (median= 86.1%),
indicating that power was likely insufficient for those SNPs. These
percentages increased to 83.8 and 100%, respectively, when only high-
quality SNPs were considered. Second, all unweighted and weighted
GRSs combining the information of these SNPs were significantly
associated with their respective traits, with weighted GRSs generally
explaining more phenotypic variance than the unweighted GRS.
Inclusion of poorly-imputed SNPs in GRSs in general still contributed

Table 2 Numbers and percentages of previously reported SNPs that

were statistically significantly associated in Lifelines with the trait of

interest

All SNPs High-quality SNPs

Trait n Po0.05 (%) n Po0.05 (%)

BMI 77 41 (53.2) 63 38 (60.3)

Height 635 327 (51.5) 476 275 (57.8)

WHRadjBMI 51 15 (29.4) 40 14 (35)

HR 15 9 (60) 10 8 (80)

DBP 32 22 (68.8) 27 18 (66.7)

SBP 33 21 (63.6) 26 17 (65.4)

QT 33 31 (93.9) 25 24 (96)

PR 9 8 (88.9) 7 7 (100)

QRS 25 22 (88) 17 15 (88.2)

eGFRcrea 52 34 (65.4) 33 26 (78.8)

Creat 4 4 (100) 3 3 (100)

UACR 1 1 (100) 0

urate 28 26 (92.9) 20 19 (95)

ALP 14 14 (100) 11 11 (100)

ALT 4 3 (75) 2 1 (50)

FG 31 25 (80.6) 23 23 (100)

GGT 26 22 (84.6) 20 18 (90)

HbA1c 9 8 (88.9) 3 3 (100)

HDL 69 42 (60.9) 48 34 (70.8)

LDL 54 30 (55.6) 34 21 (61.8)

TC 71 42 (59.2) 48 30 (62.5)

TG 37 18 (48.6) 25 14 (56)

CRP 17 13 (76.5) 14 10 (71.4)

PLT 52 39 (75) 32 28 (87.5)

WBC 2 1 (50) 1 1 (100)

Hb 8 5 (62.5) 5 4 (80)

MCH 15 13 (86.7) 11 11 (100)

MCV 12 11 (91.7) 11 10 (90.9)

RBC 7 6 (85.7) 6 6 (100)

FEV1 4 3 (75) 4 3 (75)

FVC 5 1 (20) 3 1 (33.3)

FEV1/FVC 10 7 (70) 9 7 (77.8)

Total 1442 865 (60) 1057 700 (66.2)

Median % (IQR) 75 (59.8–88.2) 83.8 (63.6–98)

Abbreviations: IQR, interquartile range; SNP, single nucleotide polymorphism.
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to the variance explained, advocating for the use of all known SNPs
and not only high-quality ones when constructing GRSs. The total
variance explained by the weighted GRSs constructed from all SNPs
was 15.52% for height and between 0.02 and 6.67% for the other
traits. The additive genetic variance at all common SNPs explained a
significant proportion of the phenotypic variance for all traits ranging
from 5.6% (body mass index-adjusted waist–hip ratio) to 48.9%
(height), but none of the traits showed significant dominance genetic
variance.
As mentioned above we could not replicate all SNPs that were

previously identified in large meta-GWASs. This is likely due to
reduced power resulting from a sample size of ‘only’ 13 000 individuals
in comparison to the much larger GWAS discovery samples. Power
analysis shows that our study had sufficient power (480%) to detect
effect sizes of 0.04 s.d. for very common SNPs (allele frequency
420%), 0.08 s.d. for SNPs with an allele frequency between 5 and
20%, and 0.16 s.d. for SNPs with an allele frequency between 1 and
5% (Supplementary Figure 3). As expected, SNPs extracted from
smaller GWASs were more likely to be replicated in Lifelines as in
those GWASs only SNPs with larger effect sizes could be discovered.

Conversely, SNPs from smaller GWASs more often had an effect in
the opposite direction, indicating that effect sizes from the large
GWASs could be estimated more accurately.
As far as we know, we are the first to determine how much of the

phenotypic variance is explained by both known and common SNPs
to measure the current heritability gap for a large number of complex
disease traits in one homogeneous population. However, explained
variances of GRSs and common-SNP heritabilities for individual traits
have been estimated before, and our overall results are consistent with
this literature. For instance, various studies estimated the common-
SNP heritability of height to be 40–50%,11,20,21 which matches our
finding of 48.9%. The study from which most height-associated SNPs
were extracted22 reported that genome-wide significantly associated
SNPs explained 16% of the variance in height, which is comparable to
our GRS result (15.5%). Only one trait (LDL cholesterol concentra-
tion) differed considerably from the literature: we found a common-
SNP heritability of 27%, whereas a previous study in the Icelandic
population found only 10%.21 Zaitlen et al. used a slightly different
method, which could have caused the difference, but it might also
reflect a population specific effect.

Table 3 Estimates of the explained variances by unweighted and weighted GRSs and the additive (h2SNP) and dominant (δ2SNP) variance
components captured by common SNPs

Unweighted GRS Weighted GRS GREML-GCTA

Trait N SNPs P R2 (%) P R2 (%) N h2SNP (%) h2SNP SE (%) P h2SNP δ2SNP (%) δ2SNP SE (%) P δ2SNP

BMI 13 230 77 2.3E−55 1.81 9.9E−66 2.16 10 233 24.8 3.2 9E−15 1.5 0.9 0.10

Height 13 231 635 o1E−320 13.44 o1E−320 15.52 10 234 48.9 3.2 4.4E−52 0 0.5 1

WHRadjBMI 13 228 51 1.3E−16 0.51 2.9E−16 0.49 10 231 5.6 3.1 6.8E−02 0.1 0.3 0.72

SBP 12 842 33 2.6E−33 0.83 2.9E−35 0.88 9946 17.3 3.2 8E−08 0.6 0.6 0.39

DBP 12 842 32 2.5E−32 0.89 3.1E−33 0.92 9946 17 3.3 2.6E−07 0.3 0.5 0.56

HR 11 477 15 5E−22 0.77 1.5E−21 0.75 8900 9.8 3.6 6.1E−03 0 0.4 1

PR 12 832 9 3.2E−70 2.09 1.4E−85 2.55 9941 16.3 3.2 5.2E−07 0 0.3 1

QRS 12 539 25 9.7E−85 2.40 4.8E−104 2.94 9697 22.5 3.3 1.4E−11 0 0.6 1

QT 11 640 33 4.5E−120 1.62 2.1E−180 2.39 9023 31.7 3.6 1.5E−18 0.1 0.4 0.74

Creat 13 191 4 1.4E−10 0.20 2.1E−11 0.21 10 199 26.8 3.2 6.1E−17 1 0.6 0.10

eGFRcrea 13 191 52 3.4E−64 1.74 6.9E−74 2.01 10 199 27.3 3.2 1.7E−17 1.1 0.6 0.09

UACR 13 152 1 1.9E−05 0.12 1.9E−05 0.12 10 168 7.9 3.1 1.1E−02 0 0.5 1

urate 13 226 28 2.8E−104 2.29 1.2E−210 4.52 10 229 34.5 3.2 3.4E−27 0 0.4 1

ALP 13 227 14 1.5E−129 4.03 9.8E−182 5.58 10 230 22.1 3.2 4E−12 0.7 0.7 0.27

ALT 13 227 4 2.8E−09 0.21 2.6E−12 0.29 10 230 12.1 3.1 1.1E−04 1.2 0.7 0.10

GGT 13 226 26 8.2E−61 1.63 1.2E−72 1.95 10 229 19.7 3.2 6.4E−10 0.3 0.5 0.53

FG 11 954 31 2.1E−86 2.75 5.3E−103 3.28 9244 11.2 3.5 1.6E−03 0.5 0.6 0.41

HbA1c 11 786 9 2E−38 1.17 1.1E−35 1.09 9111 14 3.5 7.3E−05 0 0.4 1

HDL 12 191 69 5.3E−98 3.49 1.1E−191 6.67 9453 18.6 3.4 5E−08 0.3 0.6 0.56

LDL 12 192 54 2.6E−71 2.54 1.3E−133 4.72 9453 26.9 3.5 2.9E−14 0 0.5 0.98

TC 12 192 71 3.6E−86 3.07 3.3E−140 4.95 9453 23.4 3.5 2.2E−11 0 0.5 1

TG 12 164 37 5.8E−52 1.85 5.9E−94 3.35 9428 19.1 3.5 3.8E−08 1.3 0.8 0.11

CRP 12 838 17 1.9E−58 1.94 2.8E−96 3.21 9940 18.9 3.2 6E−09 0.8 0.6 0.20

Hb 13 115 8 1.3E−18 0.33 4.9E−19 0.33 10 147 19 3.2 3.1E−09 0 0.3 1

MCV 12 792 12 6.4E−59 1.98 1.1E−67 2.28 9917 26.8 3.4 1.8E−15 0.1 0.4 0.77

MCH 12 733 15 1.4E−89 2.98 4.3E−102 3.39 9871 23.9 3.4 1.3E−12 0.2 0.4 0.63

RBC 12 876 7 4.5E−17 0.35 6E−18 0.37 9979 24.7 3.3 5.3E−14 0.3 0.4 0.42

WBC 13 114 2 5.8E−11 0.31 4E−13 0.39 10 150 25.2 3.2 2.5E−15 0.8 0.6 0.20

PLT 13 162 52 1.9E−84 2.55 2.5E−98 2.96 10 183 39.2 3.3 5.3E−33 0 0.3 1

FEV1 12 401 4 4.1E−07 0.20 1.6E−07 0.21 9586 25.2 3.4 2.1E−13 0 0.4 1

FVC 12 400 5 2E−03 0.02 2.1E−03 0.02 9585 24.2 3.4 1.5E−12 0 0.3 1

FEV1/FVC 12 401 10 1.5E−14 0.46 1.4E−14 0.47 9586 20.8 3.4 9.6E−10 0.5 0.5 0.33

Abbreviations: P, P-value; R2, the percentage of explained phenotypic variance attributable to the GRS.
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In our study, the dominance effect of common SNPs was not
significant for any trait. This is consistent with one earlier study that
was unable to detect any replicable dominance effects for 79
quantitative complex traits using data from three large European
cohorts including Lifelines as a replication sample.9

Although all our GRSs composed of known SNPs were sig-
nificantly associated with their respective outcomes, they explain
only a fraction of the total common-SNP heritability of these
complex traits. On average, the variance explained by the weighted
GRS accounted for only 10.7% of the common-SNP heritability.
Only for height (15.5%/48.9%= 31.7%), alanine transaminase
(24.5%), fasting glucose (28%), and HDL cholesterol (35.3%),
known SNPs accounted for a considerable part of the common-
SNP heritability. Our data thus confirms what has been found
previously for height, BMI, and QT interval,10,23 but now extends
these observations to many other complex disease traits. There are
a number of potential causes for the large gaps between the
common-SNP heritability and the part that can be explained by
all identified SNPs. It may be due to errors in the estimation of SNP
effects, but it is likely also due to the way in which SNPs are
selected for a GRS. Usually the selection of SNPs is restricted to
genome-wide significant SNPs only. This is likely too conservative,
as low power will result in SNPs with a small effect or low allele
frequency not reaching the genome-wide significance threshold.
Prediction accuracy will probably increase when less stringent
significance thresholds for the selection of SNPs are applied.
Polygenic risk score analyses could be applied using various
significance thresholds to determine the percentage of variance
explained by larger number of SNPs. We should also keep in mind
that the markers detected with GWAS are not likely to be the causal
variants, but merely in LD with them. As the SNPs on GWAS chips
are selected because they are common variants, and low-frequent
variants are in low LD with them, power to detect rare causal
variants is limited.7

Some investigators have argued that a considerable part of the
missing heritability may be caused by non-additive effects such as
dominance and epistasis.9,24 As such, an important result of our
analyses, also confirmed by Zhu et al.,9 was that we were unable to
find strong dominance effects. This is further supported by the
findings of Zaitlen et al.,21 who developed a method to include both
closely and distantly related individuals, and used this to analyze
the inflation of narrow-sense heritability. Their findings supported
neither dominance nor epistatic effects, and they attributed the
inflation of narrow-sense heritability to shared environmental
factors in datasets using close relatives. Epigenetic variation
including methylation profiles have been suggested as another
source of missing heritability, but a recent paper including samples
from Lifelines found that methylation and genetic predictors
for BMI did not overlap, suggesting that the former represent
environmental effects on this trait. For height, methylation profiles
did not explain any variation.25

In the current study, we paid careful attention to the construc-
tion of the GRS to determine the percentage of variance explained
by known SNPs. The advantage of GRS is that it is conservative, as
it only uses verified markers, and that its results are fairly robust.
However, a number of issues need to be considered when using a
GRS (see also the review by Wray et al.7). First, there should be no
overlap in the samples from which the SNPs were selected and to
which the GRS is applied, as this would yield overestimates of the
percentage of variance explained. Consequently, for meta-GWASs
that included Lifelines, we adjusted the SNP effect sizes by

subtracting the Lifelines’ effect size, and excluded the SNPs that
were no longer genome-wide significant after this correction.
Second, if the replication sample is more closely related to the
discovery population than to the target population, or if population
stratification patterns of the discovery and replication samples are
similar, the prediction accuracy will be overestimated.7 For the
selection of SNPs we included only papers that used European
individuals, to match the ethnicity of Lifelines and increase the
probability that the SNPs replicated with a similar effect size. As a
consequence our results may be less applicable to other ethnicities
and percentages of explained variance are likely to be lower in non-
European cohorts. Third, all SNPs included in the GRS need to be
independent, because otherwise regions with high LD will con-
tribute more to the GRS than regions with low or no LD, leading to
biased results. This check is mainly important when multiple meta-
GWAS and/or gene-centric studies are used for the selection of
SNPs. For this reason we excluded 71 (4.2%) dependent SNPs from
our original SNP set. Fourth, it is advised to check that the effect
direction of all individual SNPs in your cohort matches that of the
literature, otherwise effects of misaligned and correctly aligned
SNPs might cancel each other out in the GRS and the GRS might
turn out to be insignificant. As a check on correct modeling of the
GRS, when using the original effect sizes as weights, and assuming
that the effect sizes in your cohort are similar to those of the meta-
GWAS, the regression coefficient of the weighted GRS model
should be around 1.
One limitation of our approach is that we focussed on herit-

ability explained by common SNPs only, which is estimated to
cover one third to one half of the total heritability found in twin
and family studies,23,26 with the remaining genetic variance most
likely explained by lower frequency variants.27,28 As such, our
conclusions are limited to the heritability gap for only common
SNPs as typically targeted by GWAS. The new method developed by
Zaitlen et al.21 including relatives allows separate estimation of both
common-SNP and total heritability. However, this latter estimate is
potentially confounded by shared environment. With the increas-
ing availability of whole-genome sequencing data expected in the
near future, the recently developed expansion by Yang et al.28 of
their GREML method, which stratifies for LD and minor allele
frequency (GREML-LDMS), may be a good alternative for the
estimation of heritability of complex traits as it captures contribu-
tions of both rare and common variants. A similar method using
both rare and common SNPs was recently applied to 9 common
diseases in data from the UK Biobank and explained an average of
57.3% of their total (narrow-sense) heritability based on structural
equation modeling.29

In conclusion, we demonstrated that the majority of previously
reported SNP associations for 32 continuous disease traits could be
replicated in the Lifelines Study Cohort, confirming Lifelines’ value
and reliability as a resource for genetic epidemiological studies.
Although meta-GWAS studies have identified many SNPs that are
associated with complex disease traits, these SNPs explain only a small
to moderate part of the common-SNP heritability, which in turn
explains up to ~ 50% of the total heritability. Our data suggest that
dominance effects are unlikely to fill the gap of the missing heritability.
Overall our results showed that none of the GRSs of complex disease
traits are sufficiently accurate for personalized prediction limiting
successful applications in clinical practice.

Missing heritability: is the gap closing?
IM Nolte et al

883

European Journal of Human Genetics



DATA AVAILABILITY

The data that support the findings of this study are available from the
Lifelines Cohort Study (https://lifelines.nl/lifelines-research/general)
but restrictions apply to the availability of these data, which were
used under license for the current study, and so are not publicly
available. Genotype and phenotype data are available upon request
from the Lifelines Cohort, whereas the effect sizes used to correct for
the Lifelines effect are available from the authors on reasonable request
and with permission from Lifelines.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We would like to acknowledge the services of the Lifelines Cohort Study, the
contributing research centers delivering data to Lifelines, and all the study
participants. Part of the statistical analyses were carried out on the Genetic
Cluster Computer (http://www.geneticcluster.org), which is financially
supported by the Netherlands Scientific Organization (NWO 480-05-003) along
with a supplement from the Dutch Brain Foundation. And informed consent
was obtained from all individual participants included in the study.

DISCLAIMER

The Lifelines study was approved by the medical ethics committee of
the University Medical Center Groningen and conducted in accor-
dance to the Helsinki Declaration Guidelines.

1 Hindorff LA, Sethupathy P, Junkins HA et al: Potential etiologic and functional
implications of genome-wide association loci for human diseases and traits. Proc Natl
Acad Sci USA 2009; 106: 9362–9367.

2 Welter D, MacArthur J, Morales J et al: The NHGRI GWAS Catalog, a curated resource
of SNP-trait associations. Nucleic Acids Res 2014; 42: D1001–D1006.

3 Stolk RP, Rosmalen JGM, Postma DS et al: Universal risk factors for multifactorial
diseases-lifeLines: a three-generation population-based study. Eur J Epidemiol 2008;
23: 67–74.

4 Scholtens S, Smidt N, Swertz MA et al: Cohort profile: LifeLines, a three-generation
cohort study and biobank. Int J Epidemiol 2015; 44: 1172–1180.

5 Klijs B, Scholtens S, Mandemakers JJ, Snieder H, Stolk RP, Smidt N: Representative-
ness of the Lifelines Cohort Study. PLoS ONE 2015; 10: e0137203.

6 Meems LMG, de Borst MH, Postma DS et al: Low levels of vitamin D are associated with
multimorbidity: results from the Lifelines Cohort Study. Ann Med 2015; 47: 474–481.

7 Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM: Pitfalls of predicting
complex traits from SNPs. Nat Rev Genet 2013; 14: 507–515.

8 Jamshidi Y, Nolte IM, Spector TD, Snieder H: Novel genes for QTc interval.
How much heritability is explained, and how much is left to find? Genome Med
2010; 2: 35.

9 Zhu Z, Bakshi A, Vinkhuyzen AAE et al: Dominance genetic variation contributes little to
the missing heritability for human complex traits. Am J Hum Genet 2015; 96:
377–385.

10 Yang J, Benyamin B, McEvoy BP et al: Common SNPs explain a large proportion of the
heritability for human height. Nat Genet 2010; 42: 565–569.

11 Yang J, Lee SH, Goddard ME, Visscher PM: GCTA: a tool for genome-wide complex trait
analysis. Am J Hum Genet 2011; 88: 76–82.

12 Purcell S, Neale B, Todd-Brown K et al: PLINK: A tool set for whole-genome association
and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

13 Browning BL, Browning SR: A unified approach to genotype imputation and haplotype-
phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet
2009; 84: 210–223.

14 Gibbs RA, Belmont JW, Hardenbol P et al: The international HapMap project. Nature
2003; 426: 789–796.

15 Howie BN, Donnelly P, Marchini J: A flexible and accurate genotype imputation method
for the next generation of genome-wide association studies. PLoS Genetics 2009; 5:
e1000529.

16 Altshuler DM, Gibbs RA, Peltonen L et al: Integrating common and rare genetic
variation in diverse human populations. Nature 2010; 467: 52–58.

17 Harrell FE Jr: rms: Regression Modeling Strategies. R Package Version 4.3-0. Available
at: http://CRAN.R-project.org/package= rms. 2014.

18 R Core Team: R: A Language and Environment for Statistical Computing. Foundation
for Statistical Computing: Vienna, Austria, 2014.

19 Hindorff LA, MacArthur J, Morales J et al: A Catalog of Published Genome-Wide
Association Studies 2014.

20 Vattikuti S, Guo J, Chow CC: Heritability and genetic correlations explained by common
SNPs for metabolic syndrome traits. PLoS Genet 2012; 8: e1002637.

21 Zaitlen N, Kraft P, Patterson N et al: Using extended genealogy to estimate components
of heritability for 23 quantitative and dichotomous traits. PLoS Genet 2013; 9:
e1003520.

22 Wood AR, Esko T, Yang J et al: Defining the role of common variation in the
genomic and biological architecture of adult human height. Nat Genet 2014; 46:
1173–1186.

23 Yang J, Manolio TA, Pasquale LR et al: Genome partitioning of genetic variation for
complex traits using common SNPs. Nat Genet 2011; 43: 519–525.

24 Zuk O, Hechter E, Sunyaev SR, Lander ES: The mystery of missing heritability: genetic
interactions create phantom heritability. Proc Natl Acad Sci USA 2012; 109:
1193–1198.

25 Shah S, Bonder MJ, Marioni RE et al: Improving phenotypic prediction by combining
genetic and epigenetic associations. Am J Hum Genet 2015; 97: 75–85.

26 Polderman TJC, Benyamin B, de Leeuw CA et al: Meta-analysis of the heritability of
human traits based on fifty years of twin studies. Nat Genet 2015; 47: 702–709.

27 Visscher PM, Brown MA, McCarthy MI, Yang J: Five Years of GWAS Discovery. Am J
Hum Genet 2012; 90: 7–24.

28 Yang J, Bakshi A, Zhu Z et al: Genetic variance estimation with imputed variants finds
negligible missing heritability for human height and body mass index. Nat Genet 2015;
47: 1114–1120.

29 Muñoz M, Pong-Wong R, Canela-Xandri O, Rawlik K, Haley CS, Tenesa A: Evaluating
the contribution of genetics and familial shared environment to common disease using
the UK Biobank. Nat Genet 2016; 48: 980–983.

30 Locke AE, Kahali B, Berndt SI et al: Genetic studies of body mass index yield new
insights for obesity biology. Nature 2015; 518: 197–206.

31 Guo Y, Lanktree MB, Taylor KC et al: Gene-centric meta-analyses of 108 912
individuals confirm known body mass index loci and reveal three novel signals. Hum
Mol Genet 2013; 22: 184–201.

32 Lanktree MB, Guo Y, Murtaza M et al: Meta-analysis of dense genecentric association
studies reveals common and uncommon variants associated with height. Am J Hum
Genet 2011; 88: 6–18.

33 Shungin D, Winkler TW, Croteau-Chonka DC et al: New genetic loci link adipose and
insulin biology to body fat distribution. Nature 2015; 518: 187–196.

34 Yoneyama S, Guo Y, Lanktree MB et al: Gene-centric meta-analyses for central
adiposity traits in up to 57 412 individuals of European descent confirm
known loci and reveal several novel associations. Hum Mol Genet 2014; 23:
2498–2510.

35 Ehret GB, Munroe PB, Rice KM et al: Genetic variants in novel pathways
influence blood pressure and cardiovascular disease risk. Nature 2011; 478:
103–109.

36 Ganesh SK, Tragante V, Guo W et al: Loci influencing blood pressure identified using a
cardiovascular gene-centric array. Hum Mol Genet 2013; 22: 1663–1678.

37 Tragante V, Barnes MR, Ganesh SK et al: Gene-centric meta-analysis in 87,736
individuals of European ancestry identifies multiple blood-pressure-related loci. Am J
Hum Genet 2014; 94: 349–360.

38 den Hoed M, Eijgelsheim M, Esko T et al: Identification of heart rate-associated loci
and their effects on cardiac conduction and rhythm disorders. Nat Genet 2013; 45:
621–631.

39 Pfeufer A, van Noord C, Marciante KD et al: Genome-wide association study of PR
interval. Nat Genet 2010; 42: 153–159.

40 Sotoodehnia N, Isaacs A, de Bakker PIW et al: Common variants in 22 loci are
associated with QRS duration and cardiac ventricular conduction. Nat Genet 2010; 42:
1068–1076.

41 Arking DE, Pulit SL, Crotti L et al: Genetic association study of QT interval highlights
role for calcium signaling pathways in myocardial repolarization. Nat Genet 2014; 46:
826–836.

42 Chambers JC, Zhang W, Lord GM et al: Genetic loci influencing kidney function and
chronic kidney disease. Nat Genet 2010; 42: 373–375.

43 Pattaro C, Teumer A, Gorski M et al: Genetic associations at 53 loci highlight
cell types and biological pathways relevant for kidney function. Nat Commun 2016; 7:
10023.

44 Boeger CA, Chen M, Tin A et al: CUBN is a gene locus for albuminuria. J Am Soc
Nephrol 2011; 22: 555–570.

45 Koettgen A, Albrecht E, Teumer A et al: Genome-wide association analyses identify 18
new loci associated with serum urate concentrations. Nat Genet 2013; 45: 145–154.

46 Chambers JC, Zhang W, Sehmi J et al: Genome-wide association study identifies loci
influencing concentrations of liver enzymes in plasma. Nat Genet 2011; 43:
1131–1138.

47 Dupuis J, Langenberg C, Prokopenko I et al: New genetic loci implicated in fasting
glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42:
105–116.

48 Scott RA, Lagou V, Welch RP et al: Large-scale association analyses identify new loci
influencing glycemic traits and provide insight into the underlying biological pathways.
Nat Genet 2012; 44: 991–1005.

49 Soranzo N, Sanna S, Wheeler E et al: Common variants at 10 genomic loci influence
hemoglobin A(1C) levels via glycemic and nonglycemic pathways. Diabetes 2010; 59:
3229–3239.

50 Willer CJ, Schmidt EM, Sengupta S et al: Discovery and refinement of loci associated
with lipid levels. Nat Genet 2013; 45: 1274–1283.

Missing heritability: is the gap closing?
IM Nolte et al

884

European Journal of Human Genetics

https://lifelines.nl/lifelines-research/general


51 Dehghan A, Dupuis J, Barbalic M et al: Meta-analysis of genome-wide association
studies in 480 000 subjects identifies multiple loci for C-reactive protein levels.
Circulation 2011; 123: 731–738.

52 van der Harst P, Zhang W, Leach IM et al: Seventy-five genetic loci influencing the
human red blood cell. Nature 2012; 492: 369–375.

53 Nalls MA, Couper DJ, Tanaka T et al: Multiple loci are associated with white blood cell
phenotypes. PLoS Genet 2011; 7: e1002113.

54 Gieger C, Radhakrishnan A, Cvejic A et al: New gene functions in megakaryopoiesis and
platelet formation. Nature 2011; 480: 201–208.

55 Gaunt TR, Zabaneh D, Shah S et al: Gene-centric association signals for haemostasis
and thrombosis traits identified with the HumanCVD bead chip. Thromb Haemost
2013; 110: 995–1003.

56 Soler Artigas M, Loth DW, Wain LV et al: Genome-wide association and large-scale
follow up identifies 16 new loci influencing lung function. Nat Genet 2011; 43:
1082–1090.

57 Loth DW, Artigas MS, Gharib SA et al: Genome-wide association analysis identifies six
new loci associated with forced vital capacity. Nat Genet 2014; 46: 669–677.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

Missing heritability: is the gap closing?
IM Nolte et al

885

European Journal of Human Genetics


	Missing heritability: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort Study
	Introduction
	Materials and methods
	Trait and SNP selection
	Genotyping and imputation
	Statistical analysis
	Correction for the Lifelines’ effect size
	Association analysis
	Common-SNP heritability


	Results
	Trait selection
	SNP selection
	Direct SNP replication
	Genetic risk score analysis
	Common-SNP heritability

	Discussion
	Data availability
	Acknowledgements
	Note
	References




