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Homogeneous case subgroups increase power in
genetic association studies

Matthew Traylor*,1, Hugh Markus1 and Cathryn M Lewis2,3

Genome-wide association studies of clinically defined cases against controls have transformed our understanding of the genetic

causes of many diseases. However, there are limitations to the simple clinical definitions used in these studies, and GWAS

analyses are beginning to explore more refined phenotypes in subgroups of the existing data sets. These analyses are often

performed ad hoc without considering the power requirements to justify such analyses. Here we derive expressions for the

relative power of such subgroup analyses and determine the genotypic relative risks (GRRs) required to achieve equivalent power

to a full analysis for relevant scenarios. We show that only modest increases in GRRs may be required to offset the reduction in

power from analysing fewer cases, implying that analyses of more genetically homogenous case subgroups may have the

potential to identify further associations. We find that, for lower genotypic relative risks in the full sample, subgroup analyses of

more homogeneous cases have relatively more power than for higher index genotypic relative risks and that this effect is stronger

for rare as opposed to common variants. As GWA studies are likely to have now identified the majority of SNPs with stronger

effects, these results strongly advocate a renewed effort to identify phenotypically homogeneous disease groups, in which power

to detect genetic variants with small effects will be greater. These results suggest that analysis of case subsets could be a

powerful strategy to uncover some of the hidden heritability for common complex disorders, particularly in identifying rarer

variants of modest effect.
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INTRODUCTION

In recent years, genome-wide association studies of clinically defined
case phenotypes against controls have transformed our understanding
of the common genetic causes of many diseases. Hundreds of
common genetic variants have been identified that confer small but
significant proportions of disease risk.1–7 The use of clinical pheno-
types to define case sets has simplified the collection of sets of diseased
cases and has enabled easy interpretation of the impact of disease loci.
However, there are limitations to such a simple approach to
phenotyping,8–10 particularly in the presence of heterogeneity.11

First, such phenotype definitions depend on adequate diagnostic
sensitivity and specificity, which is challenging in some diseases. For
example, in Alzheimer’s Disease, where a number of common variants
have been shown to confer risk of the disease,2 the majority of cases
are diagnosed based on clinical criteria (eg, DSM-IV criteria). Post-
mortem data show that clinical diagnoses are imperfect, with
specificity and sensitivity of o80%.12 This leads to underestimation
of the effects of associated SNPs, and worse could lead to false positive
results, where associations in reality are with diseases misdiagnosed as
Alzheimer’s Disease. Second, such clinical diagnoses ignore underlying
heterogeneity in disease pathogenesis where case subtyping might be
more appropriate. Examples of diseases with genetically distinct
subgroups include ischaemic stroke, where at least three distinct
pathologies (cardioembolic, small vessel and large vessel) lead to stroke
events;13,14 migraine, where cases with or without aura have distinct
genetic susceptibility factors;15 and rheumatoid arthritis, where
anti-citrullinated peptide antibody-negative individuals show distinct

genetic associations, particularly in the HLA region.16,17 Third,
heterogeneity in genetic susceptibility to disease may exist. For
example, cases with later disease onset have more exposure to
environmental risk factors, and therefore under a liability threshold
model will have a weaker genetic susceptibility.18,19 Similarly, indivi-
duals with type 2 diabetes with higher body mass index may have
decreased genetic susceptibility to the disease.18,20

Analysis of subgroups of cases in GWAS data may therefore be
valuable to identify further associations. Such analyses have been
performed,13,15,20,21 but this has generally been carried out without
consideration of the relative power of these analyses, and the
conditions under which such analyses are advantageous are not well
understood. To resolve this, we seek to answer two questions. First,
what increase in genotypic relative risk in a disease subgroup is
required to achieve equivalent power to a full analysis? Second, what is
the relationship between power in a full analysis and a subgroup
analysis, and how is this affected by the size of the genetic effect and its
allele frequency? We first derive formulae for the relative power of
subgroup analyses to a full analysis and use these to study the power of
subgroup analyses for scenarios relevant to GWAS. We then derive
expressions for the genotypic relative risk required in a subgroup
analysis to achieve equivalent power to a full sample and evaluate this
relationship for plausible scenarios. Finally, by interrogating the power
relationship between a full and subgroup analysis for fixed propor-
tional increases in genotypic relative risk for the subgroup, we show
that subgroup analyses are advantageous in identifying genetic variants
with increasingly smaller effects.

1Clinical Neurosciences, University of Cambridge, Cambridge, UK; 2Department of Medical and Molecular Genetics, King’s College London, London, UK; 3Social, Genetic and
Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
*Correspondence: M Traylor, Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. Tel: +44 012 2321 7718;
E-mail: mt628@medschl.cam.ac.uk
Received 25 April 2014; revised 16 July 2014; accepted 20 August 2014; published online 1 October 2014

European Journal of Human Genetics (2015) 23, 863–869
& 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15
www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2014.194
mailto:mt628@medschl.cam.ac.uk
http://www.nature.com/ejhg


MATERIALS AND METHODS

Relative power of subgroup analyses
To better understand the relationship in power between a full and subgroup
analysis, formulae for the ratio of non-centrality parameter (NCP) from analysis
of a subgroup of cases to a full analysis were derived. These formulae were then
used to study properties of the NCP ratio for appropriate risk allele frequencies
(RAF), index genotypic relative risks with respect to the causal variant (λ), and
proportional increases in GRRs in the subset analysis (κ).
Expressions for the ratio in power of a subset analysis to a full analysis were

first derived using the framework from Yang et al22 as follows. In the context of
a case–control study of a complex disease with prevalence K, consider a variant
with two alleles (A, a) with frequency p and (1–p). Assuming a multiplicative
model of allele effects, the NCP of a χ2 test for association can be expressed as
follows:

NCP ¼ 2p 1� pð Þ l� 1ð Þ2v 1� vð ÞN
1� Kð Þ2 1þ p l� 1ð Þ½ �2

where N is the total sample size and v denotes the proportion of the overall
sample that are cases.22 NCP, used to calculate power analytically, is the value
that determines the degree of noncentrality of the chi-squared distribution
under the alternative hypothesis. The power of a χ2 test for association can be
found by integrating under the noncentral χ2 distribution for given NCP and
degrees of freedom of the test. Although NCP does not directly equate to
power, it is a suitable proxy measure and is used here to represent power, as in
previous studies.22

Of interest is the ratio in NCP of analysis of a subset of the cases (N2

individuals, prevalence K2, proportion of cases v2, and GRR λ2) to the power of
a full study with N1 individuals, prevalence K1, proportion of cases v1, and GRR
λ1, where N2 is a subset of N1 (retaining all controls) in which the variant has a
stronger effect.
ie, N14N2 and λ1oλ2.The ratio of NCP between two such analyses can be

expressed as:

NCP2

NCP1
¼

2p2 1�p2ð Þ l2�1ð Þ2v2 1�v2ð ÞN2

1�K2ð Þ2 1þp2 l2�1ð Þ½ �2
2p1 1�p1ð Þ l1�1ð Þ2v1 1�v1ð ÞN1

1�K1ð Þ2 1þp1 l1�1ð Þ½ �2

¼ v2 1� v2ð Þ
v1 1� v1ð Þ
� �

N2

N1

� �
2p2 1� p2ð Þ l2 � 1ð Þ2 1� K1ð Þ2 1þ p1 l1 � 1ð Þ½ �2
2p1 1� p1ð Þ l1 � 1ð Þ2 1� K2ð Þ2 1þ p2 l2 � 1ð Þ½ �2

 !

p1 and p2 are defined in the union of cases and controls in each situation. In the
context of GWAS, where genetic effects are small, and particularly when
number of controls exceeds that of cases, it can be assumed that 2p1(1− p1)
≅2p2(1− p2) in the two scenarios as changes in allele frequency between the full
and subgroup analysis will be minimal.
Thus we obtain the following expression (formula (1)) for the ratio in power

of a subgroup analysis to power of a full analysis:

NCP2

NCP1
Dj

l2 � 1ð Þ2 1þ p l1 � 1ð Þ½ �2
l1 � 1ð Þ2 1þ p l2 � 1ð Þ½ �2

 !
ð1Þ

where

j ¼ v2 1� v2ð Þ
v1 1� v1ð Þ
� �

N2

N1

� �
1� K1ð Þ2
1� K2ð Þ2

 !

To evaluate the derived formula, we calculated NCP ratios for a case–control
study of 2000 cases and 2000 controls compared with a subgroup of 1000 cases
and 2000 controls for a RAF= 0.25 and for index GRR (λ1) of 1.1, 1.2, and 1.3,
each for five subgroup GRR (λ2) using formula (1). We then compared these
with the equivalent NCP ratios from Genetic Power Calculator, calculating each
NCP separately and determining the appropriate ratio, to confirm that our
estimates matched those obtained from an alternative approach.23

Genotypic relative risk required for equivalent power in the
subgroup analysis
Having derived expressions for relative power of subgroup analyses, we then
derived an expression for the GRR (λ2) required in the subgroup to achieve

equivalent power as the full analysis. From equation (1) above, we set the full
expression for NCP ratio equal to one and solve for λ2:

j
l2 � 1ð Þ2 1þ p l1 � 1ð Þ½ �2
l1 � 1ð Þ2 1þ p l2 � 1ð Þ½ �2

 !
¼ 1

If we make the substitutions, γ= λ1− 1 and δ= λ2− 1, we have:

j
dð Þ2 1þ p gð Þ½ �2
gð Þ2 1þ p dð Þ½ �2

 !
¼ 1:

This simplifies to a quadratic equation for δ:

d2 j
1þ 2 pgþ p2g2

g2

� �
� p2

� �
� 2pd� 1 ¼ 0

Using the quadratic formula to solve for δ gives:

d ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2pð Þ2 þ 4 j

1þ 2 pgþ p2g2

g2

� �
� p2

� �s

Discarding the implausible negative solution and expressing in terms of GRR in
the subgroup analysis λ2, we obtain the following expression (formula (2)) for
the GRR in the case subgroup λ2 required to obtain equivalent power in a
subgroup analysis:

l2 ¼ 2p� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2pð Þ2 þ 4 j

1þ 2 pgþ p2g2

g2

� �
� p2

� �s !
ð2Þ

We then used the above formula to calculate the GRR (λ2) required in the
subgroup analysis to achieve equivalent power to the full analysis for four
scenarios in which a genetic variant was assumed to have a given GRR
(1.05, 1.1, 1.2, or 1.3) in the full sample, and for different proportions of
discarded cases in the subgroup analysis for three risk allele frequencies
(RAF= 0.01, 0.25, 0.5), assuming an equal number of cases and controls in
the full sample.

Relative power for fixed proportional increase in odds ratio
Additionally, we sought to study how the NCP ratio between the full and
subgroup analyses was affected by index GRR (λ1) in the full sample. We
generated results using formula (1) for intervals of GRR (1.05≤ λ1≤ 1.35) in
the full sample and for a fixed proportional increase in GRR in the subgroup,
(λ2)= κ× (λ1), where κ= 1.05, 1.10, 1.20, 1.30, using three minor allele
frequencies (RAF= 0.01, 0.25, 0.5).

RESULTS

Relative power of subgroup analyses
We identified properties of the relative power of a subgroup analysis,
using formula (1). We set disease prevalence at 1% throughout, but we
note that the results were almost completely insensitive to this value.
We used three index GRRs (λ1= 1.1, 1.2, 1.3) and, for simplicity,
assumed that λ2 is a product of λ1, that is,

l2 ¼ kl1; k41

Index GRRs were in the range of those found in previous GWAS
studies1,2,5,6,13 and were chosen in order to represent SNPs that might
be identified in future studies. Results were analysed by κ, where
λ2= κ× λ1, rather than specific GRRs to enable comparison across
different index GRRs and different proportions of discarded cases. κ
values (range= 1.00–1.10) were chosen to reflect modest changes in
GRR in case subsets and are similar to those observed in our previous
analysis of the effect of age-at-onset in ischaemic stroke.19 The NCP
ratio was calculated for proportional increases in GRR (κ) at three
minor allele frequencies, assuming either 25 or 50% of cases were
discarded (Figure 1).
As expected, increasing values of κ increased the relative power

(NCP ratio) of the subset analysis. When 50% of cases were discarded,
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the threshold of κ at which relative study power became greater in the
subset analysis was higher than when 25% of cases were discarded.
This indicates that, as expected, the required proportional increase in
GRR is correlated with the proportion of cases discarded: a higher
proportion of discarded, and therefore smaller retained case sample
size, requires a higher GRR to achieve the same power (NCP).
We compared the NCP ratios from our formula with those

calculated from comparing two sets of results generated from Genetic
Power Calculator.23 The concordance between the results was nearly

exact (r= 0.999, r2= 0.999), showing that our simple formulae
reproduce the results obtained when performing the calculations
using alternative approaches.

Genotypic relative risk required for equivalent power in subgroup
analysis
We calculated the λ2 value required to achieve equivalent power in the
subgroup for intervals of proportions of cases discarded in the
subgroup using formula (2) (Figure 2). The results showed that

Figure 1 Ratio in power between analyses of all cases and case-subset, for different minor allele frequency and subset size. MAF, minor allele frequency;
kappa (κ), proportional increase in GRR. Horizontal line at NCP ratio=1 denotes the kappa (κ) value for which power in the subset analysis exceeds that of
the full analysis.
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relatively small increases in GRR in the subgroup were required to
achieve equivalent power as a full analysis. This was particularly
notable for lower index GRRs. For example, for a GRR of 1.05 in the
full sample, a GRR of 1.079 in 25% of the cases achieves equivalent
power (Table 1). Similarly, for a GRR of 1.10, a GRR of 1.16 in 25% of
cases achieves equivalent power. This clearly shows that if stronger
genetic effects exist in subgroups of data sets, a large proportion of
cases can be discarded without loss of power.
The results also showed that the relative power of a subset analysis is

greatest for rare genetic variants at fixed values of λ1 and κ. This result
was consistent across all scenarios studied (Figures 1 and 2). For
example, for a genetic variant with index GRR λ1= 1.3 and RAF=
0.01, analysis of a subset of 25% of cases has more power if the

proportional increase in the GRR is κ41.14 (λ241.48). The propor-
tionate increase in index GRR required for equal power increases with
RAF: for the same scenario, but assuming a variant with a RAF= 0.5,
the analysis has more power for κ41.17 (λ241.52). These results
show that subgroup analyses have comparatively more power to
identify rare as opposed to common variants.

Relative power for fixed proportional increase in genotypic relative
risk
Finally, we interrogated the relationship of the NCP ratio for different
index GRRs (λ1) in the full sample, fixing κ values in each case.
For four κ values (1.05, 1.1, 1.2, 1.3) and across three minor allele
frequencies (0.01, 0.25, 0.5), the NCP ratio monotonically increased as
index GRRs decreased (Figure 3). This effect was particularly strong
for index GRRo1.15, below which the curve increased dramatically.
For example, for a variant with RAF= 0.25 and a GRR of 1.3 in the
full sample, if the variant has an effect 1.05 times stronger in half the
cases, then analysis of this subgroup does not have as much study
power than the full analysis (NCP ratio=0.96). Conversely, for the
same variant with same proportional increase in half the cases, but an
index GRR= 1.05, then analysis of the subgroup has considerably more
study power (NCP ratio= 2.73). This effect clearly shows that, for
smaller genetic effects, the proportional increase in power for analysis of
a homogeneous subgroup of the cases increases greatly and emphasizes
that homogeneous disease subgroups in which genetic effects may be
larger are better suited for detection of small genetic effects.

Figure 2 Genotypic relative risk in subgroup required to achieve equivalent power as a full analysis for intervals of proportions of discarded cases and three
minor allele frequencies. MAF, minor allele frequency.

Table 1 λ2 values required in subgroup analysis to achieve equivalent

power as full sample for given index genotypic relative risk λ1 and

proportions of discarded cases assuming RAF=0.10

λ2 for given proportions of discarded cases

λ1 25% 50% 75%

1.05 1.054 1.061 1.079

1.10 1.108 1.123 1.160

1.20 1.217 1.247 1.326

1.30 1.326 1.373 1.496

λ1, genotypic relative risk in full sample; λ2, genotypic relative risk in subgroup.
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All statistical analysis was performed using the R statistical
software. All formulae and scripts used to generate plots are available
from https://sites.google.com/site/mtraylor263/software/case-subgroup-
power-analysis.

DISCUSSION

We have developed a framework that elucidates the power relationship
between a full GWAS analysis, and analysis of a subgroup of the cases
in which genetic effects were stronger, while retaining all controls. We
derived an expression for the ratio in power between a subgroup
analysis and a full analysis and used this to study the power properties
of subgroup analyses. A simplifying assumption regarding the fre-
quency of genetic variants in the two analyses enabled the broad
properties of the power ratio to be studied. This assumption is valid
for GWAS, particularly where controls normally exceed cases by at
least twofold. This enabled identification of two important results.
First, it was shown that, as GWAS sample sizes increase, and the

detectable genetic effects of SNP variants become smaller, the power of
a subset analysis in which variants have stronger effects becomes
proportionally greater than a full analysis. Calculating NCP ratios for
ratios of GRR (κ) in the full and subset analyses supported this
observation: at lower index GRR, NCP ratios increased dramatically.
This clearly shows that, when attempting to identify genetic variants
with smaller effects, improvements in power become more substantial

for subgroup analyses, particularly for index GRRo1.15. In a recent
GWAS meta-analyses of rheumatoid arthritis,24 schizophrenia,6 multi-
ple sclerosis,25 Alzheimer’s disease,2 coronary artery disease,3 and
breast cancer,26 only 39 of the 339 associated variants showed overall
odds ratios 41.15, suggesting that the majority of variants with effects
greater than this threshold have now been identified. Our results show
that analysing homogeneous disease subgroups forms a powerful
strategy to identify further variants with effects in this range, as
stronger effects may be present. Second, we also showed that the
relative increase in power for a subset analysis is consistently greater
for rare as opposed to common variants, although this effect was more
modest. These results imply that searching for rare variants will
particularly be aided by subtyping of disease cases into genetically
distinct groups. Importantly, both of these results also hold for a lower
case:control ratio (Supplementary Figure S1). Several methods can be
used to identify genetically distinct disease subgroups in which a
stratified GWAS analysis could be performed. Genetic correlations
between disease subgroups can be calculated using the GREML
methods,27 which use linear mixed models to obtain estimates of
the genetic correlation between the groups. This approach showed
shared genetic susceptibility to psychiatric disorders28 and that
Tourette syndrome and obsessive-compulsive disorder are genetically
distinct.29 The approach can easily be adapted to interrogate disease
subgroups, where a low genetic correlation in a well-powered sample

Figure 3 Ratio in power between an analysis considering all cases to an analysis considering a subset of cases for different minor allele frequency with fixed
proportional increase in genotypic relative risk (kappa (κ)) in the subset. MAF, minor allele frequency; kappa (κ), proportional increase in genotypic
relative risk.
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would imply distinct genetic architecture. Similarly, genetic risk profile
scoring, in which the cumulative effect of genome-wide SNPs is used
to test for differences between sets of cases and controls, can be used
for the same purpose.30 This has been used in analyses comparing
multiple sclerosis with amyotrophic lateral sclerosis31 and Parkinson’s
disease with Alzheimer’s disease.32 Genome-wide genetic correlations
between diseases can be calculated in combination with these methods
using the framework created by Dudbridge.33 Finally, polygenic rare
variant analysis approaches can be used to identify disease groups that
have a polygenic contribution from rare variants and can be used to
identify disease subgroups.34 These methods will be valuable for
identifying the genetically distinct groups that would benefit from
further association analysis.
A compelling example of the benefits of subgroup analyses can be

found in ischaemic stroke, where subtyping of cases based of clinical
and radiological criteria has enabled identification of the first common
variants associated with the disease.13,14,35–37 Importantly, in the
largest meta-analysis to date, all associations were with ischaemic
stroke subtypes, and these showed much stronger association than in
an analysis with all ischaemic stroke (κ= 1.24, 1.23, 1.19, and 1.11 for
rs2107595 (HDAC9), rs6843082 (PITX2), rs879324 (ZFHX3), and
rs2383207 (9p21), respectively).13 Further to this, analyses of early
onset cases suggest even stronger associations with young onset cases
at these loci.19 This example clearly shows that with careful subtyping,
genetic studies can provide new information on heterogeneous
diseases, such as stroke.
Several other considerations should be made when interpreting our

conclusions. First, our results are expressed in terms of genotypic
relative risk. For rarer diseases, these values are almost equivalent to
odds ratios, the preferred measure in most GWAS studies. This
approach may therefore be more intuitive to researchers. However, an
alternative approach would have been to benchmark our comparisons
in terms of the variance explained by a locus. In particular, this may
affect comparisons across the allele frequency spectrum. Second, our
approach does not take into account the multiple testing correction,
which it might be appropriate to make when performing multiple
analyses on a single dataset. Factoring this correction into the analyses
would have the effect of increasing the GRR required to achieve
equivalent power in the subset analysis. Third, it should be noted that,
for complex diseases, the underlying genetic architecture is unknown.
Therefore the optimal approach to splitting the data into homo-
geneous groups remains elusive. Indeed, in some diseases, splitting the
cases into groups may not prove beneficial. Interrogation of GWAS
data sets with GREML methods,27 polygenic scoring,30 and polygenic
rare variant association methods,34 as discussed above, may help to
shed some light on this.
Many have been critical of GWAS for not identifying a large

proportion of disease variance and for only identifying risk variants
with small effects.38,39 However, GWAS have been very successful,
particularly in auto-immune and metabolic disorders, where hundreds
of associated genetic variants have been identified.4 Our results
strongly advocate a renewed effort to identify genetically distinct
disease groups with increased phenotypic homogeneity within existing
data sets, in which power to detect genetic variants with small effects
will be greater. This will be particularly important as the focus of
genetic studies turns from common to rare variation.
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