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Mosaic copy number variation in schizophrenia

Douglas M Ruderfer1,2,3, Kim Chambert1, Jennifer Moran1, Michael Talkowski4,5, Elizabeth S Chen6,
Carolina Gigek6, James F Gusella4,5, Douglas H Blackwood7, Aiden Corvin8, Hugh M Gurling9,
Christina M Hultman10,11, George Kirov12, Patrick Magnusson10, Michael C O’Donovan12, Michael J Owen12,
Carlos Pato13, David St Clair14, Patrick F Sullivan15, Shaun M Purcell1,2,3, Pamela Sklar2 and Carl Ernst*,6

Recent reports suggest that somatic structural changes occur in the human genome, but how these genomic alterations might

contribute to disease is unknown. Using samples collected as part of the International Schizophrenia Consortium

(schizophrenia, n¼3518; control, n¼4238) recruited across multiple university research centers, we assessed

single-nucleotide polymorphism genotyping arrays for evidence of chromosomal anomalies. Data from genotyping arrays on each

individual were processed using Birdsuite and analyzed with PLINK. We validated potential chromosomal anomalies using

custom nanostring probes and quantitative PCR. We estimate chromosomal alterations in the schizophrenia population to be

0.42%, which is not significantly different from controls (0.26%). We identified and validated a set of four extremely large

(410Mb) chromosomal anomalies in subjects with schizophrenia, including a chromosome 8 trisomy and deletion of the q arm

of chromosome 7. These data demonstrate that chromosomal anomalies are present at low frequency in blood cells of both

control and schizophrenia subjects.
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INTRODUCTION

Schizophrenia (SCZ) is a highly heritable, debilitating psychiatric
disorder characterized by psychosis and cognitive deficits, and has a
lifetime prevalence of B0.5–0.7%.1,2 Recent studies into the genetic
architecture of this disease have implicated both common single-
nucleotide polymorphisms (SNPs) and rare copy number variants
(CNVs).3–5 In particular, recent studies of rare CNVs in SCZ have
identified both individuals with single events of high penetrance and
abundant events across the genome. Specifically, CNVs 4500 kb at
22q11–13, 15q11, 15q13, 3q29, 7q36.3 and 1q21 have been linked to
SCZ in B1% of cases.3,6–9 In addition, it has been shown that
individuals with SCZ are more likely to carry large, rare CNVs than
individuals without the disorder. This ‘burden’ has also been shown
to be significant in singleton CNVs – those CNVs observed only once
in a particular sample.
Recent reports suggest that somatic structural changes in the

nuclear genome are not uncommon and can be identified using
SNP genotyping arrays,10–12 at least when using DNA from white
blood cells. These studies have detected a mosaicism rate from 0.23 to
2% and mosaicism has been observed in 7 to 95% of lymphocytes
based on probe intensity measures. No disease study has yet revealed a
difference between cases and controls on this measure.

The purpose of this study was to determine differences between
SCZ cases and controls with respect to structural changes in the
genome of white blood cells, and how frequently these anomalies arise
in the SCZ population, within the limitation of the detection
resolution of SNP genotyping arrays. Our data suggest that both
control and SCZ populations carry large chromosomal anomalies in
blood cells at frequencies under 0.5%.

MATERIALS AND METHODS

Samples
Samples used in this study have been described previously and quality control

measures have been thoroughly detailed.3,13 Subjects in this study passed all

QC measures for chip quality as with our previous analysis.3 Individuals were

placed into nine groups based on site, collection date and/or Affymetrix array

used (Table 1). All DNA used in the original International Schizophrenia

Consortium (ISC) study or for validation in this study was derived from whole

blood. Independently, we also used samples from the Molecular Genetics of

Schizophrenia Genetic Association Information Network (GAIN) as an

external validation set, with the caveat that increased rates of abnormality

might be observed because these DNA samples were derived from Epstein–

Barr virus-transformed lymphocytes. Samples were genotyped by the Genetic

Analysis Platform at The Broad Institute of Harvard and MIT according to

standard protocols as described previously.3 Both the Affymetrix 5.0 and 6.0
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arrays were used (Table 1) and CNVs were identified using Birdseye,14 which

identifies rare CNVs by integrating intensity data from neighboring probes

using a hidden Markov model (HMM) on a per-individual basis. Performance

is dependent on a number of factors including SNP and copy number probe

density, and mean intraindividual probe variance. Covariate analysis was

carried out to control for 96-well plate effects. For each copy number change,

an LOD score was generated that describes the likelihood of the copy change

relative to no copy change over the given interval. Large copy number

changes were assessed after removing CNVs o20 kb or with LOD scores o10

and after joining segments appearing to be incorrectly split by the HMM. Rare

CNVs were defined as being seen in o1% of the sample following the same

procedure described previously3 in PLINK.15

We were particularly interested in subjects with a large extent of CNVs and/

or those subjects with many CNVs, as both of these situations could reveal

subjects with large CNVs (ie, chromosomal CNVs, or very large duplications/

deletions). ‘Large extent of CNV’ refers to the situation where a single large

CNV is identified, while ‘many CNVs’ refer to a situation where a single subject

has an abnormally high level of CNVs, far from the group mean.

Nanostring analysis
One to four probes were designed to regions of interest by Nanostring

Technologies (http://www.nanostring.com/). An oligonucleotide reporter

probe was synthesized to each region ligated to one of six fluorophores

ligated. A separate capture probe, which pairs with the reporter probe:DNA

hybrid, then allows the complex to attach to a matrix for imaging. No

amplification steps are required for this reaction. After hybridization, samples

were transferred to the nCounter Prep Station where excess probes were

removed and probe/target complexes were aligned and immobilized in the

nCounter Cartridge. Cartridges were then placed in the nCounterDigital

Analyzer for imaging. To control for the amount of DNA present across all

samples, a spike-in plasmid was used and served as a positive control. Further,

optimized probe pairs for 10 invariant regions of the genome were included for

data normalization. Other controls were used to ensure optimal hybridization

and purification efficiency.

Quantitative polymerase chain reaction
Once CNVs were identified, we randomly selected subregions from CNVs that

did not overlap with subregions validated by nanostring. All primers were

designed in Primer3 (http://www.primer3.com/) and all amplification products

were between 100 and 180 basepairs. Using a LightCycler 480 II (Roche

Diagnostics, Basel, Switzerland) and SYBR green (Promega, Madison, WI,

USA), we assessed fluorescent signal over cycle time. At least two replicates

were used per region and a non-varying genomic region was assessed to

control for DNA concentration. All melting curves showed single peaks,

suggesting that primers bound efficiently and specifically. The second

derivative of the cycle threshold (Ct) was used for data analysis on factory-

loaded settings. For comparison, six control CEPH subjects from the HapMap

project were assessed.

RESULTS

We used SNP microarray data from 3518 SCZ patients and 4238
controls3 from nine sites (Table 1) to detect potentially large
chromosomal changes. Among the individuals from the complete
ISC sample set,3 the median number of rare copy number changes
4100 kb per individual is 1 (mean 0.9) and the median extent of
CNV is 129 kb (mean 267 kb). From this set, we identified 60 outliers
(defined as outside of 3 SDs from the mean extent of CNV) where the
median number of rare CNVs over 100 kb per outlier individual is 3
(mean¼ 9.7) and the median extent of CNV is 6.4Mb (mean 17Mb).
Figures 1 and 2 show the size and distribution of rare CNVs from
cases and controls in the outlier sample and Table 2 shows specific
subject information.
We defined an outlier sample set (cases and controls, n¼ 60) from

the initial ISC sample set (case and controls, n¼ 7756). In all, 36
outliers of 3518 cases were identified, whereas only 24 outliers of 4238
controls were identified (Fisher’s exact test P¼ 0.026; OR¼ 1.82). To
further address whether this outlier population was enriched for
individuals with SCZ, we performed logistic regression on phenotype
and outlier status, accounting for the nine sites, and array type
(Table 1) and gender as covariates. Overall, we found a significant
over-representation of SCZ cases compared with controls (P¼ 0.019),
in line with our previous findings that suggest increased CNV burden
in people with SCZ.
No cell lines were used in the above analysis and all DNA processed

was isolated from blood. We had access to CNV data from the
Molecular Genetics of Schizophrenia GAIN, where there were 1324
controls and 1096 SCZ cases, with the caveat that most DNA was
isolated from lymphoblastoid cell lines.5 In this independent sample
set, we again observed enrichment in SCZ relative to control. Using
our previous criteria, we identified 22 case outliers and 12 control
outliers (GAIN sample only; Fisher’s exact text P¼ 0.024).
A number of copy number changes from this first analysis

represent scattered copy changes across the genome and thus are of
unclear quality and biological importance, despite passing array QC
parameters. To define only those subjects with potential chromosomal
anomalies (GAIN subjects are excluded from this analysis because of
potential confounds from cell line artifacts), we selected subjects with
very high extent of CNV (ie, suggesting a single large CNV). Of 36
cases, 15 were included in the outlier pool based on the extent of
CNV in the genome, whereas 11 of 24 controls did. Four schizo-
phrenic subjects and two wild-type subjects met the criteria for both
large CNVs and many CNVs. In all, 19 cases and 13 controls were
included in the outlier sample for having many CNVs. Thus, 0.42% of
the total sample of cases and 0.26% of controls had large structural

Table 1 Number of outlier subjects by site, genotyping platform and disease status

Sample Ancestry Genotyping platform Outlier controls Outlier SCZ All controls All SCZ

Cardiff University Bulgarian 6.0 3 3 561 406

Trinity College Dublin Irish 6.0 7 6 816 260

Portuguese Island Portuguese 5.0 1 7 182 293

University of Aberdeen Scottish 5.0 2 2 665 692

University of Edinburgh Scottish 6.0 1 7 279 357

Karolinska Institutet 1 Swedish 5.0 1 0 138 144

Karolinska Institutet 2 Swedish 6.0 4 7 227 369

Karolinska Institutet 3 Swedish 6.0 5 2 902 534

Unversity College London British 5.0 0 2 468 463

Total 24 36 4238 3518
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variation as assessed by SNP array, a number too small to detect a
statistically significant difference.
To give an example of the large variation observed, we present in

Table 3 nine cases and six controls with CNVs 410Mb (the
minimum size of structural variation required for karyotype analysis,
under good conditions), of which one case carried two CNVs of this
size. Eight of these large CNVs included a putative duplication over
centromere 1 or centromere 9, and thus are of unknown validity given
the lack of probes in centromeric regions (consistent signal is detected
on either side of the centromere). In the GAIN sample, two cases and
one control had a single CNV 410Mb.
We sought to confirm the existence of large chromosomal

anomalies, and accurate calling of structural variation from arrays,
by sampling DNA from some subjects. Using two different technol-
ogies, we chose two large duplications and two large deletions from
three independent cases (Figure 3). First, we used a series of custom
nanostring probes to assess whether an increased or decreased signal
corresponded with the genomic location of the CNV call from the
arrays. As these were large events, we used multiple probes targeting
different regions of the CNV (Figure 3). In each case, we were able to
validate the array data for the existence of the event and an estimate
of size (probes were placed across chromosome but did not cover the

entirety of the called event). Second, we performed quantitative PCR
on each large CNV from these subjects (Table 4). Data generated from
all three technologies were in agreement (Table 4).

DISCUSSION

We used SNP genotyping arrays to call copy number gains and losses
in the genome, and identified a structural variant rate of approxi-
mately 0.42% in blood cells from people with SCZ. This was a large
study with close to 8000 subjects, but we could not detect a significant

Table 2 Number of rare CNVs and total kb spanned by rare CNVs per

outlier individual

ID Site Phenotype

No. of

CNVs

Total

CNV (kb)

1 Cardiff University Case 44 10 452
2 Cardiff University Case 35 7818.9
3 Cardiff University Case 7 1534.5
4 Cardiff University Control 2 5894.6
5 Cardiff University Control 3 117.4
6 Cardiff University Control 1 2734.4
7 Karolinska Institutet 1 Control 2 7818.4
8 Karolinska Institutet 2 Case 6 22 471.4
9 Karolinska Institutet 2 Case 70 18 293.5

10 Karolinska Institutet 2 Control 5 574
11 Karolinska Institutet 2 Case 3 146246
12 Karolinska Institutet 2 Case 44 8286.6
13 Karolinska Institutet 2 Case 6 140142
14 Karolinska Institutet 2 Control 4 574
15 Karolinska Institutet 2 Control 6 810.7
16 Karolinska Institutet 2 Control 3 4713.7
17 Karolinska Institutet 2 Case 17 2645.1
18 Karolinska Institutet 2 Case 235 88 960.6
19 Karolinska Institutet 3 Control 4 22 003.3
20 Karolinska Institutet 3 Control 1 20 395.1
21 Karolinska Institutet 3 Control 4 3077.3
22 Karolinska Institutet 3 Case 6 7647.7
23 Karolinska Institutet 3 Control 22 1778.6
24 Karolinska Institutet 3 Control 11 200119
25 Karolinska Institutet 3 Case 3 217.5
26 Portuguese Island Collection Case 170 71 472.4
27 Portuguese Island Collection Case 7 12 308
28 Portuguese Island Collection Case 28 6258.8
29 Portuguese Island Collection Case 70 12 505.7
30 Portuguese Island Collection Case 23 13 736.5
31 Portuguese Island Collection Control 3 13 789.8
32 Portuguese Island Collection Case 36 18 127.9
33 Portuguese Island Collection Case 29 7752.9
34 Trinity College Dublin Case 32 3654.3
35 Trinity College Dublin Case 3 1500.5
36 Trinity College Dublin Case 4 22 544.7
37 Trinity College Dublin Case 4 3683.9
38 Trinity College Dublin Case 1 35.3
39 Trinity College Dublin Case 4 19 874
40 Trinity College Dublin Control 58 11 300
41 Trinity College Dublin Control 1 2872.8
42 Trinity College Dublin Control 37 4086.7
43 Trinity College Dublin Control 492 484548
44 Trinity College Dublin Control 341 126722
45 Trinity College Dublin Control 199 43 711.3
46 Trinity College Dublin Control 234 142143
47 University College London Case 1 39.7
48 University College London Case 178 52 199.9
49 University of Aberdeen Case 2 291.8
50 University of Aberdeen Control 3 13 181.8
51 University of Aberdeen Case 122 54 641.3
52 University of Aberdeen Control 1111 232645
53 University of Edinburgh Control 53 28 277.4
54 University of Edinburgh Case 26 2890.2
55 University of Edinburgh Case 9 7167.6
56 University of Edinburgh Case 7 4178.9
57 University of Edinburgh Case 66 14 659.6
58 University of Edinburgh Case 10 3985.3
59 University of Edinburgh Case 21 1978.2
60 University of Edinburgh Case 659 283661

Figure 1 Distribution of number of rare CNVs and total extent of rare CNV

by individual. Red dots represent cases and black dots represent controls. A
full color version of this figure is available at the European Journal of

Human Genetics journal online.

Figure 2 Size and number of CNVs in the outlier sample.
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difference in the rate of chromosomal anomalies in cases compared
with controls, where the rate of structural variation in controls was
0.23%. All CNVs described here are ‘chromosomal’ in nature, ranging
from 10Mb to complete chromosomal copy number changes. Many
of these changes are not viable with life and thus subjects carrying
these alterations are mosaic – that is, some cells in different tissues
have post-zygotic mutations not shared by all cells from the
individual.
Similar studies using SNP arrays to call large structural variation

identified have similar rates of aberrations. For example, in the study
by Jacobs et al,12 the rate of mosaicism in 26 136 controls was
identical to our study (0.23%). In contrast, mosaicism in a bladder
cancer study of 1991 individuals (957 controls) was 1.7%.11 Increased
rate of mosaicism is frequently observed in cancer cells, which is likely
the driver of this difference. We detected almost a twofold increase in
large deletion/duplication variation in the SCZ population, suggesting
that with greater power, significant differences between groups might
arise. Still, it seems unlikely that such large structural variation

(eg, trisomy on chromosome 8) has an affect on SCZ, nor is it clear
how post-zygotic changes in non-neural tissue might influence
disease.
Analysis of DNA extracted from brain rather than lymphocytes

could have revealed different results. It is not clear, for example, what
the relationship is between lymphocyte mosaicism and neuron
mosaicism. It may be that rates in (postmitotic) neurons are very
low compared with lymphocytes that continuously renew, providing
more opportunities for genomic alterations over time in blood cells.
While brain DNAwould likely be more relevant to psychiatric disease,
it is also much harder to acquire, being restricted to DNA extraction
from brains stored in brain banks. The benefit of using lymphocytes is
the large number of subjects that can be sampled, which is crucial
given the small number of mosaic events detected. Two studies have
looked at CNVevents using brain DNA,16,17 the former with a sample
size of 600 and the latter using 35 brains. Neither study assessed
mosaicsm, and each found only single sites of potential pathology.
Still, these studies document the benefits of studying CNV events
using DNA from human brain.
In this study, a majority of subjects met the criteria because of

many CNVs, rather than a single large CNV. While this was a function
of the filtering paradigm to find large structural variations and these
subjects were removed from further analysis in this study – they did
not have large structural variation – they may reflect legitimate
findings and not technical artifacts. This follows with our previous
finding of increased burden of CNVs in the genome; however,
the sheer number of scattered CNVs across the genome of some
individuals is suspiciously high, but may warrant further analysis.
Mosaicism rates are likely higher for both cases and controls than

that reported here. First, we only used stringent array filtering criteria,
which revealed only subjects with a large majority of cells carrying the
same genotype. Specifically, mosaicism can be described in terms of
percent mosaicism, that is, what proportion of cells from a given
tissue are mosaic. In the quantitative PCR and nanostring validation
component of our study, we observed ratios of approximately 3:2 for
duplications and 2:1 for deletions, strongly suggesting that all
lymphocytes carry the mutation. Thus, any subjects mosaic for, for
example, 50% of cells would not have been detected. Second, our
study design could only detect specific types of chromosomal
alterations; we were unable to detect balanced chromosomal translo-
cations, for example, suggesting that the true rate of chromosomal
aberrations is in actuality much higher.

Figure 3 Non-centromeric CNVs 410 Mb identified in a refined set of

outlier subjects. Red squares indicate where on the chromosome the loss

(del) or gain (dup) occurred. Regions of quantitative PCR (qPCR) and

nanostring probe binding are marked by small squares adjacent to

chromosome images. A full color version of this figure is available at the

European Journal of Human Genetics journal online.

Table 3 Case and control subjects with CNVs 410Mb (CEN denotes

CNV overlaps centromere)

ID Phenotype Position (Hg18)

1 Control Chr3: 1–199 501 827

2 Control Chr4: 177 461 444–191 032 806

3 Control Chr18: 81 453–11557 558

4 Case Chr4: 60 028 470–70412 078

5 Case Chr8: 1–146 274 826

6 Case Chr7: 61512 866–158 819 766

6 Case Chr1: 143 543 613–247 191 012

7 Case Chr5: 92668 239–120 870 769

8 Control CEN chr9: 45929 611–66 324 680

9 Control CEN chr1: 120 549 231–142 770 366

10 Control CEN chr9: 41682 298–69 122 542

11 Case CEN chr9: 45258 767–68 352 799

12 Case CEN chr1: 120 549 231–142 770 366

13 Case CEN chr9: 45003 665–69 134 634

14 Case CEN chr9: 45332 198–66 219 272

15 Case CEN chr1: 120 549 231–142 770 366

Table 4 Validation of CNV calls by nanostring and qPCR

Site ID CHR

No. of nanostring

probes

Nanostring

results

qPCR

results

Karolinska

Institutet 2

1 1 2 2.77±0.060 1.52

Trinity College

Dublin

2 5 1 1.1 �2.04

Karolinska

Institutet 2

1 7 7 1.06±0.35 �1.96

Karolinska

Institutet 2

3 8 10 2.35±0.030 1.55

Abbreviations: ID, individual; CHR, chromosome number; qPCR, quantitative PCR.
Numbers in the nanostring column represent copy number changes compared with controls
normalized by control gene regions (2.0¼ no loss or gain). Numbers in the qPCR column
represent fold change difference of a single case subject compared with CEPH controls (n¼6),
normalized to a gene region.
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This study suggests that the frequency of mosaic structural
variation in blood cells from people with SCZ is B0.42%, almost
double that observed in control subjects. Still, overall numbers were
too small to detect a difference between cases and controls. Future
studies might assess multiple tissues for mosaicism from people with
SCZ, use different technology to assess copy changes across tissues,
increase sample sizes and better study those subjects with multiple
small CNVs throughout their genomes.
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