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Discriminative accuracy of genomic profiling
comparing multiplicative and additive risk models

Ramal Moonesinghe*,1, Muin J Khoury2, Tiebin Liu2 and A Cecile JW Janssens3,4

Genetic prediction of common diseases is based on testing multiple genetic variants with weak effect sizes. Standard logistic

regression and Cox Proportional Hazard models that assess the combined effect of multiple variants on disease risk assume

multiplicative joint effects of the variants, but this assumption may not be correct. The risk model chosen may affect the

predictive accuracy of genomic profiling. We investigated the discriminative accuracy of genomic profiling by comparing additive

and multiplicative risk models. We examined genomic profiles of 40 variants with genotype frequencies varying from 0.1 to

0.4 and relative risks varying from 1.1 to 1.5 in separate scenarios assuming a disease risk of 10%. The discriminative accuracy

was evaluated by the area under the receiver operating characteristic curve. Predicted risks were more extreme at the lower and

higher risks for the multiplicative risk model compared with the additive model. The discriminative accuracy was consistently

higher for multiplicative risk models than for additive risk models. The differences in discriminative accuracy were negligible

when the effect sizes were small (o1.2), but were substantial when risk genotypes were common or when they had stronger

effects. Unraveling the exact mode of biological interaction is important when effect sizes of genetic variants are moderate at

the least, to prevent the incorrect estimation of risks.
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INTRODUCTION

Common diseases such as type 2 diabetes, cardiovascular disease,
asthma and osteoporosis are caused by a complex interplay of many
genetic and non-genetic factors, each of which conveys only a minor
increase in the risk of disease. Genetic associations typically have odds
ratios, with effect sizes ranging from 1.1 to 1.5, with each single
polymorphism explaining only a minor fraction of the variation in
a phenotype. Because the predictive accuracy of testing for a single
genetic variant is limited, genetic prediction of disease will be based
on testing for multiple genetic variants simultaneously (genomic
profiling).

Studies on the combined effect of multiple genetic variants generally
assume that joint effects result from multiplying the risk of single
variants rather than from adding them.1–4 Further, empirical studies
implicitly assume multiplicative risk models, as the joint effects of
multiple genes are typically examined using logistic regression or Cox
proportional hazard analyses.5–7 The assumption that susceptibility
genes interact in a multiplicative manner may not be correct.8 On the
basis of the ratio of disease risks in monozygotic and dizygotic twins of
cancer cases, an additive model provided the best fit for most common
cancers, including breast cancer.9 Conversely, a very high incidence
was reported for monozygotic twins of women with breast cancer,
which would be more consistent with a multiplicative model for joint
genetic effects.10

Because estimated disease risks of genomic profiles may differ
depending on whether a multiplicative or additive risk model is

assumed, the clinical validity of the combined testing may change
accordingly. The aim of this study was to investigate predicted risks
and the discriminative accuracy of predictive testing using multiple
genetic variants, by comparing multiplicative and additive risk models
for the estimation of the joint genetic effects. The two risk models
were compared using hypothetical scenarios with equal genotype
frequencies and risks and using realistic scenarios of predictive testing
for multiple genetic variants in prostate cancer.

METHODS
Distribution of predicted risks and discriminative accuracy were obtained

from formulae. The formulae are presented for the hypothetical scenario in

which we considered genomic profiles based on K genetic variants with equal

genotype frequencies (m) and equal relative risks (R). In the hypothetical

scenario, for ease of interpretation, we consider genetic variants that have

dominant or recessive effects yielding two possible results for each gene: a risk

genotype and a non-risk or referent genotype. Under the assumption of equal

frequencies and relative risks, genomic profiles can be expressed as risk

genotype scores, values of which range from zero to K. The formulae to

calculate disease risk when the risk score equals c for both multiplicative

models and additive models are given by equation (A4) in Appendix A and by

equation (B1) in Appendix B, respectively.

The discriminative accuracy, quantified as the area under the receiver

operating characteristic curve (AUC), is determined by the distribution of

disease risks in those who will develop the disease and those who will not. The

AUC indicates the discriminative accuracy of a continuous test. The AUC

ranges from 0.5 (total lack of discrimination) to 1.0 (perfect discrimination)
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and is independent of the prevalence of disease. The AUC can be mainly

considered as the probability that the test correctly identifies the affected

subject from a pair in whom one is affected and one is unaffected.

An AUC of 0.95 means that 95% of the pairs are correctly classified, whereas

a test with an AUC of 0.50 is non-discriminative – as accurate as tossing

a fair coin.

The AUC can be estimated non-parametrically from the empirical ROC

curve. In this study, we derive equations for sensitivity and specificity for both

additive and multiplicative models and construct empirical ROC curves. An

empirical ROC curve is constructed by connecting all combinations of

sensitivity and specificity obtained at all possible cutoff levels of the genotype

score. AUC is calculated using the Trapezoidal rule. ROC curves and its

characteristics have been described in many papers.11,12

The sensitivity and specificity of genotype scores are calculated from the

sensitivity and specificity of each single genetic variant. The sensitivity

of a single genetic variant is the percentage of carriers of the risk geno-

type among individuals who will develop the disease, and specificity is the

percentage of non-carriers among those who will not develop the disease. The

sensitivity, bS, and specificity, aS, of a single gene test are given by the following

equation:13

bS ¼ Rm

ðRm+ð1 �mÞÞ and

aS ¼ 1 �m� pbs
1 � p

where R is the relative risk of the risk genotype, p is the risk of the disease in the

population and m is the risk genotype frequency.

For a multiplicative model, the sensitivity (bMc) at each cutoff value of the

genotype score is a function of the sensitivities of the single genetic variants:

bMc ¼
XK
i¼c

K
i

� �
biSð1 � bSÞK�i

where bS is the sensitivity of each single genetic variant, K is the total number

of variants that are considered in the genotype score, and c is the cutoff

value of the genotype score. The derivation is presented in Appendix A

When bMc is known, the specificity at each cutoff value (aMc) can be obtained

from Table 1:

aMc ¼ 1 �

PK
i¼c

K
i

� �
mið1 �mÞðK�iÞ�pbMc

1 � p

For the additive model, sensitivity bAc and specificity aAc are given by the

following equation:

bAc ¼

PK
i¼c

K
i

� �
ðiðR� 1Þ+1Þmið1 �mÞK�i

1+KmðR� 1Þ ; and

aAc ¼ 1 �

PK
i¼c

K
i

� �
mið1 �mÞðK�iÞ�pbAc

1 � p
; respectively:

The derivations for these formulae are given in Appendix B.

We considered genotype scores that were based on 40 genes, and investi-

gated risk distributions and AUC for different combinations of relative

risks and genotype frequencies. We assumed that the disease risk in the

population was 10%.

RESULTS

Figure 1 shows the disease risks for genotype scores of up to 20 for the
two models when relative risks are 1.1, 1.2 and 1.5, and genotype
frequency is 0.1 and 0.3. We considered genotype scores of up to 20
because anyone in the population having a genotype score of more

than 20 is almost zero for these genotype frequencies. The disease risk
for the additive model increases linearly with increasing risk geno-
types. When genotype frequency is 10%, the disease risk for the
additive model is higher than the disease risk for the multiplicative
model for up to a genotype score of 5, and when genotype frequency is
30%, the disease risk for the additive model is higher than the disease
risk for the multiplicative model for up to a genotype score of 13 for
relative risk 1.2 and up to a genotype score of 14 for relative risk 1.5.
When the genotype score is 4 in the genomic profile, with relative risk
1.2 and genotype frequency 10%, the increase in disease risk for the
additive model is only 0.006; when relative risk is increased to 1.5, the
increase is 0.028; when genotype frequency is 30% and relative risk
1.2, the increase is 0.033; and when genotype frequency is 30% and
relative risk 1.5, the increase is 0.041. Theoretically, multiplicative
models give higher disease risk compared with additive models when
there are a large number of risk genotypes.

The vertical lines in Figure 1 denote the distribution of risk
genotypes in the population. When the genotype frequency is 0.1,
only 8 out of 10 000 in the population can have more than 10 risk
genotypes, whereas when the genotype frequency is 0.3, more than
75% of the population can have more than 10 risk genotypes. For
more than 79% of the population, the risk under the additive model
is higher than the risk under the multiplicative model. However,
when relative risk is around 1.1, the difference in risk between
the two models is almost negligible. For the population for
which the multiplicative model gives higher risk than the additive
model, the difference in risk is very large. This situation is to be
expected, as both models assume identical prevalence of disease in
the population.

We also considered 40 risk genotypes with genotype frequency
0.1 and relative risk 1.2, and another risk genotype, A, with the
same genotype frequency and relative risk of 3.5 in a genomic profile.
The risks for the two models for the populations with and without risk
genotype A are shown in Figure 2. For the sub-population that has
risk genotype A, almost 77% shows a higher risk under the multi-
plicative model compared with the additive model. However, the
proportion of the sub-population that has the risk genotype is only
10% of the overall population.

Figure 3 shows the ROC curves for the different combinations of
relative risks and genotype frequencies studied. The AUC for the
multiplicative model (AUCM) and the AUC for the additive model
(AUCA) increase with increasing values of relative risks. When relative
risk is 1.1 and genotype frequency is 10%, the AUCM and AUCA are
0.56 and 0.53, respectively. When the relative risk is 1.5, AUCM

Table 1 The relationship of sensitivity and specificity of genomic

profiling to genotype and disease frequencies (multiplicative models)

Will develop

disease

Will not develop

disease Total

Genotype

score 4c

pbMc (1�aMc)(1�p) XK
i¼c

K
i

� �
mi ð1 �mÞðK�iÞ

Genotype

score rc

(1�bMc)p aMc(1�p)

1 �
XK
i¼c

K
i

� �
mið1 �mÞðK�iÞ

Total P 1�p 1
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increases to 0.74 and AUCA increases to only 0.60. This shows that
higher relative risks result in larger differences between AUCM and
AUCA. When genotype frequency is increased from 0.1 to 0.4, keeping
relative risk at 1.5, the AUCM increases from 0.74 to 0.85, but AUCA

declines from 0.6 to 0.55. As seen in Figure 2, there is not much
difference between AUCM and AUCA for lower values of relative risks
(around 1.1) and for lower values of genotype frequencies (less than or
equal 10%). For example, when relative risk is 1.1 and genotype
frequency is 0.1, the difference between AUCM and AUCA is only 0.02.

However, when relative risk is 1.5 and genotype frequency is 0.4, the
difference between AUCM and AUCA is 0.30. AUCM increases steeply
with increasing relative risks and genotype frequency, whereas the
increase in AUCA remains small.

To explore this phenomenon further, we plotted the AUC against
genotype frequency for relative risks of 1.2 and 1.5 (Figure 4). The
AUC for the multiplicative model increases with increasing genotype
frequency up to 50% and then declines. The AUC for the additive
model increases with increasing genotype frequency for rare genotypes
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Figure 1 Disease risks for up to 20 risk genotypes when genomic profiles are based on 40 genetic variants with genotype frequency (m) 0.1 and 0.3 and

relative risk (R) 1.1, 1.2 and 1.5 for multiplicative and additive models. Disease risk¼10%. Vertical lines give the probability distribution of risk genotypes

in the population.
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of up to 5–7% range and then declines. Figures 3 and 4 show that, for
rare genotypes (less than 10%) and low relative risks (les than 1.2), there
is not much difference between the AUC for multiplicative models and
that for additive models. When relative risks are around 1.2–1.5, the
largest difference in AUC for the two models is achieved when genotype
frequency is around 50%. The AUCs for the 41 genetic variants
illustrated in Figure 2 are 0.635 and 0.590 for the multiplicative and
additive models, respectively. When the genotype frequency is increased
to 0.3 for all the 41 risk genotypes, the AUCs for the multiplicative and
additive models are 0.690 and 0.588, respectively.

The population attributable fractions (PAF) of the 40 risk geno-
types for the additive and multiplicative models are also different.14

For example, when R¼1.2 and G¼0.1, the PAF for the additive
model is 0.444, whereas the PAF for the multiplicative model is
0.615. When the genotype frequency is increased to 0.2, the PAF
values for additive and multiplicative models are 0.547 and 0.792,
respectively.

Zheng et al15 studied the genetic predisposition to prostate cancer
by examining the association between prostate cancer and five
SNPs that map to the three 8q24 loci, to 17q12, and to 17q24.3.
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The genotype frequencies of the five SNPs were 0.3, 0.25, 0.07, 0.77,
and 0.6, and the relative risks were 1.38, 1.28, 1.53, 1.37, and 1.22. The
prevalence of diagnosed prostate cancer in the US adult population is
about 1.6%, based on estimates from the National Health Interview
Survey. As the true prevalence of prostate cancer is unknown, we
assumed an upper bound of 3.2% for the prevalence of prostate
cancer. We used the same methods developed in this study for
identical risk genotypes to calculate AUC for these five SNPs after
adjusting the probabilities calculated in the equations for sensitivity
and specificity based on different genotype frequencies and relative
risks. The AUCs for the multiplicative model and additive model were
0.569 and 0.541, respectively.

DISCUSSION

In this paper, we compared the clinical discriminative accuracy of a set
of 40 polymorphisms in a genomic profile for multiplicative and
additive models assuming identical risk and genotype frequency. We
showed that multiplicative models yield more extreme risk estimates
than additive models. The multiplicative models have higher AUC
compared with additive models for the ranges of genotype frequency
and relative risk considered in this study.

The difference between clinical discriminative accuracy for multi-
plicative models and additive models increased with increasing geno-
type frequency (up to 0.5) and increasing relative risk. There is
no difference in clinical discriminative accuracy for the two models
when genotype frequency is less than 0.1 and relative risk is
around 1.1. The discriminative accuracy for the additive model
increases slightly at first and then declines with increasing genotype
frequency.

Several researchers have used logistic regression models to calculate
the AUC for joint effects of multiple risk genotypes. When using
logistic regression to calculate the AUC, a multiplicative (log additive)
model for joint effects is assumed. In reality, however, we do not know
the true underlying model for joint effects of genetic variants. If the
true biology is additive or less than multiplicative, we overestimate the
predictive accuracy by using multiplicative risk models, which parti-
cularly affects the extreme ends of the risk distribution. On the other
hand, but this is hardly practised, if we apply additive models in
instances in which the true biology is multiplicative or more than
additive, we underestimate the predictive accuracy. If the relative risk
is low (around 1.1) and the genotype frequency is less than 0.1, there
would not be any difference in AUC for the two models. Therefore, for
evaluating the predictive value of genomic profiling, which typically
combines multiple weak susceptibility variants, the underlying risk
model may not affect the discriminative accuracy so much, but it may
affect the estimations of absolute risks.

Lund16 compared additive and multiplicative models for reproduc-
tive risk factors and postmenopausal breast cancer. The author
explored a relative risk function ranging from multiplicative to
additive by changing the exponent in a power transformation and
calculated the goodness-of-fit statistics for different power models. On
the basis of this analysis, the author concluded that mathematical
models close to being additive fitted slightly better than the multi-
plicative models. Sample sizes required in the baseline group of a
cohort study and a case–control study to detect departure from a
multiplicative model in the direction of an additive model and from
an additive model in the direction of a multiplicative model for the
joint effect of two binary risk factors have been studied.17

The mutually adjusted locus relative risks from a multilocus main
effects logistic regression will, in principle, be smaller than the
individual locus marginal relative risks when the true multilocus

interaction model is additive. This may offset the overestimation of
risks from the multiplicative interaction assumption.

We considered binary risk genotypes (dominant or recessive
models) because the number of binary risk genotypes in the popu-
lation has a binomial (K, G) distribution, where G is the genotype
frequency and K is the number of genetic variants in the genomic
profile. For codominant models, the risk of alleles within each locus
could be additive or multiplicative. If we assume identical risk alleles
and Hardy–Weinberg equilibrium within each locus, it can be shown
that the distribution of risk alleles in K loci in the population has a
binomial (2K, A) distribution, where A is the allele frequency.18

Hence, our method can be easily extended to risk alleles when
allele risks are either additive or multiplicative within and across
biallelic loci.

In this paper, we clearly show the difference in AUC between
additive and multiplicative models for genomic profiles. Our study
is limited by the assumption of independence of the genetic variants,
and our inability to model gene–gene interactions. More methodo-
logical work is needed in this area to detect the joint effect of multiple
genetic variants for both additive and multiplicative models when
gene–gene interactions are present.
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APPENDIX A

MULTIPLICATIVE MODELS

Let R be the relative risk and m the genotype frequency for each of the
K risk genotypes. Let X be the genotype score in the genomic profile of
K risk genotypes. Disease frequency p can be expressed as

p¼ Pr½D+� ¼
XK
c¼0

Pr½D+jX¼c�Pr½X ¼ c� ðA1Þ

Consider the multiplicative risk model:

Pr½D+jX¼~c� ¼IRc ðA2Þ

where I is the risk for individuals not carrying risk variants or
the background risk (I¼Pr[D+|X¼0]). Substituting Pr½X¼c� ¼
K
i

� �
mcð1 �mÞðK�cÞ and (A2) in (A1) gives:

p ¼I
XK
c¼0

K

c

� �
Rcmcð1 �mÞðK�cÞ

¼ I½Rm+ð1 �mÞ�K
ðA3Þ

The sensitivity of the test for the multiplicative model is given by

bMc¼ Pr½X � cjD+�

¼

PK
i¼c

Pr½D+jX ¼ i�Pr½X ¼ i�

p

bMc¼
I
PK
i¼c

K
i

� �
Rimið1 �mÞK�i

p

Substituting the expression for I from (A3) gives

¼

PK
i¼c

K

i

� �
Rimið1 �mÞK�i

½Rm+ð1 �mÞ�K

¼
XK
i¼c

K

i

� �
Rm

Rm+ð1 �mÞ

� �i

1 � Rm

Rm+ð1 �mÞ

� �K�i

¼
XK
i¼c

K

i

� �
bisð1 � bsÞK�i

where bS ¼ Rm
½Rm+ð1�mÞ� is the sensitivity for screening for individual

markers.
The disease risk when the genotype score is c in a genomic profile

with K genetic variants using the multiplicative model is given by

Pr½D+jX¼c� ¼IRc¼ p � Rc

½Rm+ð1 �mÞ�K
ðA4Þ

APPENDIX B

FOR THE ADDITIVE RISK MODEL

Pr½D+jX¼c� ¼I½1+cðR� 1Þ�
and

p¼
XK
c¼0

I½1+cðR� 1Þ�
K

c

� �
mcð1 �mÞðK�cÞ

¼ I½1+KmðR� 1Þ�

The sensitivity for the test for the additive model is given by

bAc¼

PK
i¼c

Pr½D+jX¼i�Pr½X¼i�

p

¼

PK
i¼c

½1+iðR� 1Þ�
K

i

� �
mið1 �mÞðK�iÞ

½1+KmðR� 1Þ� ;

and aAc is obtained from Table A1 given below:

aAc ¼ 1 �

PK
i¼c

K
i

� �
mið1 �mÞðK�iÞ�PbA

1 � p

The disease risk when the genotype score is c in a genomic profile
with K genetic variants using the additive model is given by

Pr½D+jX¼c� ¼I½1+ cðR� 1Þ� ¼ p½1+cðR� 1Þ�
½1+KmðR� 1Þ� : ðB1Þ

Table A1 The relationship of K genetic markers sensitivity and

specificity to marker and disease frequencies (additive models)

K Markers Disease

Will develop

disease Will not Total

More than c of

K markers present

pbAc (1�aAc) (1�p) XK
i¼c

K
i

� �
mi ð1 �mÞðK�iÞ

At most c of K

markers present

(1�bAc)p aAc (1�p)

1 �
XK
i¼c

K
i

� �
mið1 �mÞðK�iÞ

Total p 1�p 1
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