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The (CAG)n tract of Machado–Joseph Disease gene
(ATXN3): a comparison between DNA and mRNA
in patients and controls

Conceição Bettencourt*,1,2, Cristina Santos1,3, Rafael Montiel4, Teresa Kay5, João Vasconcelos6, Patrı́cia Maciel7

and Manuela Lima1,2

Machado–Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder of late onset (occurring at a mean age of

40.2 years). The clinical manifestation of MJD is dependent on the presence of an expansion of the (CAG)n motif within exon

10 of the ATXN3 gene, located at 14q32.1. The variance in onset of MJD is only partially correlated (B50–80%) with the

extension of the CAG tract in genomic DNA (gDNA). The main aim of this work was to determine whether there are

discrepancies in the size of the (CAG)n tract between gDNA and mRNA, and to establish whether there is a better association

between age at onset and repeat size at the mRNA level. We typed gDNA and cDNA samples for the (CAG)n tract totalizing 108

wild-type and 52 expanded ATXN3 alleles. In wild-type alleles no differences were found between gDNA and cDNA. In expanded

alleles, the CAG repeat size in gDNA was not always directly transcribed into the mRNA; on average there were differences of

+1 repeat at the cDNA level. The slight discrepancies obtained were insufficient to cause significant differences in the

distribution of the expanded alleles, and therefore no improvement in onset variance explanation was obtained with mRNA.
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INTRODUCTION

Overall, spinocerebellar ataxias (SCAs) are considered to be rare
disorders (prevalence B3:100 000). Machado–Joseph disease (MJD)
(MIM 109150), also known as SCA type 3 (SCA3), is one of the
most common SCAs worldwide,1 reaching its highest prevalence
value in Azores Islands (Portugal) (B1:3472).2 MJD is a clinically
heterogeneous autosomal dominant neurodegenerative disorder of
late onset (occurring at a mean age of 40.2 years), involving the
cerebellar, ocular motor, pyramidal, extrapyramidal and peripheral
motor systems.3

MJD is caused by the expansion of a CAG repeat at exon 10 of the
ATXN3 gene (14q32.1), which encodes for ataxin-3.4,5 Wild-type
alleles present 12–44 CAG units, whereas expanded alleles contain
between 53 and 87 CAG repeats.6,7 Because in genomic DNA (gDNA)
the (CAG)n number in the expanded alleles is only partially correlated
with the age at onset, accounting for 50–80% of its variability,8,9

precise predictions of the onset based on repeat size are unfeasible.
As in other polyglutamine disorders, both germinal8 and somatic10

instability have been described for expanded MJD alleles at the
gDNA level. The existence of such molecular instability, which is
related to DNA replication and repair processes, raises the hypothesis
that changes in the CAG repeat number could also occur during
transcription. Previous studies on yeast models have highlighted the
possibility that transcription-related mechanisms could account for

the generation of longer transcripts.11 However, this hypothesis is still
much unexplored for polyglutamine disorders.

The main aim of this work was to determine whether there are
discrepancies in the size of the (CAG)n tract at the ATXN3 gene
between gDNA and mRNA from MJD patients and controls, and to
establish whether there is a better association between age at onset and
repeat size at the mRNA level.

MATERIALS AND METHODS

Subjects
After obtaining informed consent, blood samples were collected from 52 clinically

confirmed MJD patients of Azorean ancestry, for whom age at onset was available

(mean age 37.92 years). Twenty-eight apparently healthy individuals, of the same

background and with no familial history for MJD, were used as controls.

gDNA and cDNA samples
DNA and total RNA were extracted from peripheral blood leukocytes, using a

salting-out procedure and Trizol reagent (Invitrogen, Ltd, Paisley, UK),

respectively. Total RNA (weight 2mg) was subjected to direct cDNA synthesis

using the ThermoScript reverse transcription (RT)-PCR System (Invitrogen)

with Oligo(dT)20, at 601C for 50 min.

Allele size determination
For gDNA, fragments containing the (CAG)n tract of the ATXN3 gene

(198 bp+(CAG)n) were amplified using previously described conditions.12
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Ponta Delgada 9501-801, Azores, Portugal. Tel: +351 296650477; Fax: +351 296650100; E-mail: mcbettencourt@uac.pt

European Journal of Human Genetics (2010) 18, 621–623
& 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00

www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2009.215
mailto:mcbettencourt@uac.pt
http://www.nature.com/ejhg


For cDNA, the same methodology was applied, after substituting the forward

primer by MJD814F (5¢-TATTCAGCTAAGTATGCAAG-3¢). The amplification

products obtained also contained the (CAG)n tract plus 198 bp. Allele size

determination was made according to Bettencourt et al.12

Statistical analysis
Wilcoxon’s test was performed using SPSS v.15.013 to detect discrepancies

between the sizes of the expanded ATXN3 alleles in gDNA and mRNA.

An exact test was conducted in GENEPOP v.1.2 (http://genepop.curtin.

edu.au/)14 to test for differences in the expanded allele size distribution between

gDNA and mRNA. Correlation analysis was performed to determine the

relationship between the CAG repeat number in the expanded alleles and the

age at onset, using SPSS v.15.0.13

RESULTS

With regard to wild-type alleles, no discrepancies were observed
between the CAG repeat number in gDNA and in mRNA (Table 1).
In the expanded alleles (Table 1), however, differences were observed
in 48 cases (92.3%), with statistically significant (Wilcoxon’s test,
Z¼�6.239, Po0.000) increases of +1 (alleles 63–78) or +2 CAG
repeats (alleles 66–78) in mRNA (inferred from cDNA). Nevertheless,
when comparing the expanded allele size distributions (gDNA versus
mRNA), no significant differences were found (exact test, P¼0.286)
(Figure 1), indicating that, globally, the allelic distribution is similar in
both types of samples.

Negative correlations between (CAG)n size and age at onset were
observed at both gDNA and mRNA levels (r¼�0.825 and r¼�0.819,
respectively), with similar percentages of explanation of onset variance
(68% gDNA and 67% mRNA).

DISCUSSION

The main aim of this work was to determine whether there are
discrepancies in the size of the (CAG)n tract at the ATXN3 gene
between gDNA and mRNA in expanded and wild-type alleles. On
analysing cDNA, we consistently detected differences from +1 to +2
repeats between gDNA and mRNA in expanded alleles. The possibility
that this could result from a methodological artefact produced during
in vitro RT could be raised. However, and to minimize the occurrence
of in vitro errors, an enzyme with high thermal stability was used,
enabling the increase of RT reaction temperature (in this case to 601C),
which reduces the probability of RNA secondary structure formation
and improves priming specificity. On the other hand, the absence of
discrepancies for wild-type alleles, and the fact that there was no
relationship between increases of +1 or +2 repeats and the size of the
expanded allele in gDNA, does not support a systematic error of the
technique. Therefore, it is most likely that the size differences between
gDNA and mRNA observed for the expanded alleles are in fact
produced in vivo during transcription. It is known that triplet repeat
sequences are able to form alternative structures, such as slipped
strand structures.15 The presence of those structures along the gDNA
template may cause transient pausing and backward slippage of the
RNA polymerase complex. As it was proposed previously, from the
study of yeast models with long CAG or CTG tracts,11 this could result
in the resynthesis of the same RNA sequence, leading to the formation
of longer transcripts. The present results support the hypothesis that
transcriptional slippage occurs at the MJD locus in a size-dependent
way, as it was observed only in expanded ATXN3 alleles.

To our knowledge, comparisons at the gDNA and mRNA levels
with regard to the size of the expanded ATXN3 alleles were only made
in a previous study,16 which analysed neuronal and non-neuronal
post-mortem tissues of a single MJD patient. The referred study
additionally included the analysis of the corresponding loci in one
patient with dentatorubral-pallidoluysian atrophy (DRPLA) and
another with spinal and bulbar muscular atrophy (SBMA). Their
results indicated that the tissue-specific size variation of the expanded
CAG repeats present in the gDNA was directly transcribed into the
mRNAs of the three analysed loci (MJD, DRPLA and SBMA). In the
present study, the number of MJD patients was largely increased;
results showed that the CAG repeats in gDNA were not always directly
transcribed into the mRNAs. The slight discrepancies observed,
however, were insufficient to cause significant differences in the
expanded alleles’ distribution, and no improvement in onset variance
explanation was obtained at the mRNA level. Other factors (genetic,
environmental or both) should be influencing the onset variance and
should be further analyzed.
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