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high prevalence of type II diabetes in Polynesians
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The prevalence of non-insulin-dependent diabetes mellitus (type II diabetes) in Polynesia is among the
highest recorded worldwide and is substantially higher than in neighboring human populations. Such
large differences in the frequency of a phenotype between populations may be explained by large allele
frequency differences between populations in genes associated with the phenotype. To identify genes that
may explain the high between-population variation in type II diabetes prevalence in the Pacific, we
determined the frequency of 10 type II diabetes-associated alleles in 23 Polynesians, 23 highland New
Guineans and 19 Han Chinese, calculated population-pairwise Fst values for each allele and compared
these values to the distribution of Fst values from B100 000 SNPs from the same populations. The
susceptibility allele in the PPARGC1A gene is at a frequency of 0.717 in Polynesians, 0.368 in Chinese but is
absent in the New Guineans. The striking frequency difference between Polynesians and New Guineans is
highly unusual (Fst¼ 0.703, P¼0.007) and we therefore suggest that this allele may play a role in the large
difference in type II diabetes prevalence between Polynesians and neighboring populations.
European Journal of Human Genetics (2007) 15, 584–589. doi:10.1038/sj.ejhg.5201793; published online 28 February 2007

Keywords: type II diabetes; Fst; Polynesia; PPARGC1A; thrifty gene hypothesis

Introduction
Type II diabetes, or non-insulin-dependent diabetes melli-

tus [MIM 125853], has undergone an explosive increase

in prevalence during the past two decades and is now

considered one of the main threats to human health

worldwide.1 The diabetes epidemic is primarily owing to

the spread of a sedentary lifestyle and obesity, which

become pronounced under modernization, urbanization

and industrialization.2 Although this epidemic is apparent

worldwide, it is most pronounced in some recently

modernized traditional societies such as Native Americans,3

Pacific Islanders4 and Australian Aborigines.5

The prevalence of type II diabetes in several Pacific

populations ranks among the highest in the world.4 For

example, on the Pacific island of Nauru type II diabetes

was virtually unknown 50 years ago but is now present in

B40% of adults.6,7 This is the second highest prevalence

recorded in the literature, after that of the Pima Indians.3

This heightened susceptibility, however, is not equally

severe across all Pacific populations and it has been

suggested that the extreme susceptibility genotype was

introduced by the Austronesian-speaking ancestors of
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present-day Polynesians,4,8 who likely originated in Taiwan

sometime before 3000bp and reached the furthest islands

of Polynesia by 800bp.9 For example, Austronesian-speak-

ers from Fiji,10 East New Britain11 and coastal Papua

New Guinea12 have moderate to high susceptibilities to

type II diabetes, whereas there is a notable absence of type

II diabetes in both traditional living and partly urbanized

non-Austronesians from highland Papua New Guinea8,11

and the Solomon Islands.13 These latter groups are thought

to be primarily derived from earlier migrations.14–16 In the

Solomon Islands and New Caledonia, where Austronesian

and non-Austronesian populations share the same

environment, type II diabetes prevalence is higher in

Austronesians than in non-Austronesians,17,18 suggesting

that the varying genetic susceptibility to type II diabetes in

this region of the world may be ascribed to the relative

contribution of Austronesian genetic admixture.

The loci that contribute to within-population pheno-

typic variation may be different from those that are

responsible for between-population phenotypic variation

and thus traditional within-population association and

linkage analyses may have limited power to detect the loci

that contribute to phenotypes that differ greatly between

populations. For example, although variation in the MC1R

gene is associated with skin pigmentation variation

within Europeans,19–21 allele frequencies at this locus do

not differ greatly between Europeans and other popula-

tions and it is, therefore, unlikely that this locus

contributes to differences in skin pigmentation between

Europeans and other populations.22 The alleles that under-

lie large between-population phenotypic differences are

expected to show large frequency differences between

populations. Thus, from a set of type II diabetes-associated

SNPs, those at which the susceptibility allele is at

unusually high frequency in Polynesians, compared to

neighboring populations, are candidates to account for

the high prevalence of type II diabetes in Polynesians. To

identify such candidates, we genotyped and calculated

Fst, a measure of genetic differentiation, for 10 type II

diabetes-associated SNPs in three human populations

(Polynesians, Han Chinese and highland Papua New

Guineans) and compared these values to a distribution of

Fst values from B100000 SNPs genotyped in these same

three populations.

Materials and methods
DNA samples included 23 Polynesians (nine Cook Islan-

ders, eight Western Samoans, four Tongans and two Nuie

Islanders), 23 highland New Guineans and 19 Han

Chinese; samples were collected with ethical approval

from the participating institutions and DNA was extracted

according to standard protocols. Samples from Polynesia

and New Guinea are described elsewhere,14,23 whereas the

Han Chinese are from Beijing. Type II diabetes-associated

alleles were defined as variants with replicated evidence for

association with type II diabetes (in ABCC8, ADRB2,

CAPN10 (2 SNPs), GYS1, IRS1, KCNJ11, PPARG, PPARGC1A,

SLC2A1) as suggested by two meta-analyses.24,25 The

recently described variants in TCF7L2 were not typed

because this discovery was made after genotyping had been

initiated for this project.26,27 Genomic regions surrounding

the SNPs of interest were amplified by PCR and restriction

enzyme analyses were used to detect alleles at each SNP

site. For SNPs that did not present a natural restriction

site, we employed PIRA PCR.28 For the SNP in GYS1

(rs8103451), all individuals were monomorphic for the

allele that is not recognized by the restriction enzyme and

this was confirmed by sequencing.

An unbiased estimator of Fst was calculated for each

population pairwise comparison for each type II diabetes-

associated SNP and for each SNP from the Affymetrix

GeneChips Human Mapping 100K Set according to

equation (1) in Weir and Cockerham.29 The genotyping

of samples with the 100K SNP set followed previously

described methods30 and included genotype data for

116 197 SNPs. However, an allele that is monomorphic in

the two populations being compared receives an undefined

Fst value according to Weir and Cockerham,29 and SNPs

that contained genotype information from fewer than

50% of the individuals in a population were omitted in

that population. Thus the number of Fst values from

the 100K set for each population pairwise comparisons

were as follows: China-New Guinea¼92783, China-Poly-

nesia¼93294, New Guinea-Polynesia¼89012.

To determine whether our geography-based assignment

of samples to populations reflects the underlying genetic

structure of the samples, we examined population struc-

ture using STRUCTURE v 2.1.31 Owing to program limita-

tions, 10 000 SNPs were randomly selected for the analyses.

Two groups were assumed under the admixture model

without any prior population assignment; 10000 burn-in

cycles and 50000 replicates were used in each run. All runs

were performed under the l¼ 1 option and repeated five

times. The ln of the probability of observing the data was

�335837.0 for K¼2. Chinese and New Guinea populations

were clearly differentiated whereas the Polynesian popula-

tion appeared as intermediate between them. The 95%

credible intervals of the admixture proportions overlap in

all Polynesian individuals. However, we observed signifi-

cantly higher Chinese ancestry (13%) in one New Guinea

individual when compared to other New Guineans

(B0.2%) and this individual was therefore excluded from

further analyses (data not shown).

The samples from the 100K set were identical to the

samples typed for the type II diabetes-associated SNPs

except seven Cook islanders and six Han Chinese from the

100K set were replaced by seven different Cook islanders

and five different Han Chinese for the diabetes SNP typing.

Results were similar and conclusions unchanged when
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analyses were conducted on the subset of samples typed for

both the 100K set and the diabetes-associated SNPs (data

not shown). The type II diabetes-associated SNP in PPARG

was not typed by RFLP because it was included in the 100K

SNP set. Empirical P-values were generated by comparing

the observed value to the Fst distribution from the 100K

set. To correct for multiple comparisons, for each popula-

tion pairwise comparison we randomly sampled 10 SNPs

10 000 times from the 100K set and generated corrected

P-values by counting the number of times out of 10000 one

or more of the 10 Fst values was equal to or greater than the

observed Fst value for each diabetes-associated SNP.

Results and discussion
A list of the sites of interest, the primers and the restriction

enzymes are provided in Table 1. None of the 10 type II

diabetes-associated SNPs was significantly out of Hardy-

Weinberg equilibrium (data not shown). The frequencies of

the type II diabetes-susceptibility alleles in the Chinese,

New Guineans and Polynesians and the Fst values for each

population pairwise comparison are provided in Table 2.

The susceptibility allele at SLC2A1 is at high frequency in

Polynesians when compared to the Chinese (Fst¼0.254,

P¼0.052), but not when compared to the New Guineans

(Fst¼0.059, P¼0.500). The prevalence of type II diabetes

in China is presently at 6–7%32,33 and with increasing

economic development the prevalence is on the rise.34–36

However, it is not known whether, under similar environ-

mental conditions, type II diabetes prevalence in the

Chinese is substantially lower than the prevalence in

Polynesians. Thus, it remains unclear whether the high

frequency of the SLC2A1 susceptibility allele contributes to

the high prevalence of diabetes in Polynesians. The similar

frequency of this allele between New Guineans and

Polynesians could reflect genetic contributions from the

former to the latter, as has been hypothesized to have

occurred during the migrations of the Polynesian ancestors

along the northern coast of New Guinea.37,38

The PPARGC1A SNP exhibits the largest allele frequency

difference between the populations in this study (Table 2).

Especially striking is the high frequency of the suscept-

ibility allele in Polynesians (0.72), compared to its

complete absence in the New Guineans. Figure 1 shows

the Fst values of the PPARGC1A SNP compared to the

empirical distribution from the 100K SNP set for all three

population pairwise comparisons. In the Polynesia – New

Guinea comparison, the Fst value for the PPARGC1A SNP is

0.703, which lies in the top 0.7% of the empirical Fst

distribution: only 608 out of the 89012 SNPs from the

100K set have greater Fst values. After correcting for

multiple comparisons, this observation remains unusual

(P¼0.0655). Compared to the frequency in the Chinese

(0.37), the frequency of the PPARGC1A susceptibility allele T
a
b
le

1
In
fo
rm

a
ti
o
n
o
n
th
e
n
in
e
ty
p
e
II
d
ia
b
e
te
s-
a
ss
o
ci
a
te
d
S
N
P
s
ty
p
e
d
in

th
e
p
re
se
n
t
st
u
d
y

Lo
cu
s
n
a
m
e

d
b
S
N
P
ID

R
is
k

a
lle
le

Fo
rw

a
rd

p
ri
m
er

se
q
u
en

ce
R
ev
er
se

p
ri
m
er

se
q
u
en

ce

A
n
n
ea
lin

g
te
m
p
er
a
tu
re

(1
C
)

En
zy
m
e

P
C
R

p
ro
d
u
ct

si
ze

(b
p
)

D
ig
es
te
d

p
ro
d
u
ct

si
ze
s

P
IR
A

P
C
R

A
B
C
C
8

rs
1
8
0
1
2
6
1

A
G
T
C
T
C
A
G
G
G
G
C
T
G
T
C
T
T
C
T
G
G
A

G
C
C
T
C
T
C
T
T
C
C
T
G
A
T
A
T
C
C
A
A
G
C
C

6
7

E
A
G
1

1
2
0

1
0
3
,
1
7

Y
E
S

A
D
R
B
2

rs
1
0
4
2
7
1
4

G
C
T
T
C
T
T
G
C
T
G
G
C
A
C
C
C
A
A
T

T
G
A
A
G
T
A
G
T
T
G
G
T
G
A
C
C
G
T
C
T
G

5
7

B
B
V
I

1
8
8

6
1
,
1
2
7

N
O

C
A
P
N
1
0
S
N
P
_
4
3

rs
3
7
9
2
2
6
7

C
T
C
T
C
T
G
A
T
T
C
C
C
A
T
G
G
T
C
T
G
T
A

G
A
T
G
C
C
A
G
A
G
A
G
T
T
T
C
T
G
T
G
T
G

6
2

B
B
V
I

1
9
0

1
1
6
,
4
4
,
3
0

N
O

C
A
P
N
1
0
S
N
P
_
4
4

rs
2
9
7
5
7
6
0

G
T
C
A
A
G
G
C
T
T
A
G
C
C
T
C
A
C
C
T
T
C
A
G
A

A
T
C
C
A
T
A
G
C
T
T
C
C
A
C
G
C
C
T
C
C
T

6
0

H
G
A
I

1
3
7

3
7
,
1
0
0

Y
E
S

G
Y
S
1

rs
8
1
0
3
4
5
1

G
C
A
C
A
C
C
C
T
T
A
T
G
C
A
A
A
T
G
A
G
A
A

A
G
C
C
T
G
G
G
C
A
A
C
A
T
T
T
T
A
T
T
T
T

6
2

X
B
A
I

2
4
3

7
4
,
1
6
9

N
O

IR
S
1

rs
1
8
0
1
2
7
8

A
A
G
C
T
C
C
C
A
G
A
G
A
G
G
A
A
G
A
G
A
C
T

G
G
T
A
G
G
C
C
T
G
C
A
A
A
T
G
C
T
A

6
2

X
M
A
I

1
5
1

1
2
2
,
2
9

N
O

K
C
N
J1
1

rs
5
2
1
9

A
G
C
C
T
G
G
C
A
G
A
G
G
A
C
C
C
T
G
T
C

G
T
G
A
A
C
A
C
G
T
C
C
T
G
C
A
G
G
A
A
G
C

6
2

T
A
Q
a
lp
h
a
I

1
3
6

1
9
,
1
1
7

Y
E
S

P
P
A
R
G
C
1
A

rs
8
1
9
2
6
7
8

A
A
A
G
A
A
A
A
C
A
G
C
T
C
C
A
A
G
A
C
C
A
G

A
C
T
T
T
C
A
T
C
T
T
C
G
C
T
G
T
C
A
T
C
A

6
2

A
G
E
I

2
0
8

9
5
,
1
1
3

N
O

S
LC

2
A
1

rs
8
4
1
8
5
3

A
A
G
A
G
G
A
A
C
C
C
A
G
C
A
C
T
C
T
G
T
A
G

C
A
T
A
T
G
T
G
G
C
T
C
A
C
A
G
A
C
C
C
T
A

6
2

X
B
A
I

2
3
5

7
8
,
1
5
7

N
O

Type II diabetes candidate SNPs in Polynesians
S Myles et al

586

European Journal of Human Genetics



is relatively high in Polynesians: the Polynesia – China Fst

is 0.194 (P¼0.091). The Fst value for the China – New

Guinea comparison is 0.369 (P¼0.115). Although the

Chinese have a frequency of the PPARGC1A susceptibility

allele that is intermediate between the New Guineans and

Polynesians, it is unclear how this may relate to the

susceptibility of type II diabetes in the Chinese because

comparisons between studies of the prevalence of type II

diabetes in different populations under different environ-

mental conditions are difficult to interpret. Nevertheless,

as Polynesians have a much higher prevalence of type II

diabetes than New Guineans living under similar environ-

mental conditions, the unusually large difference in

frequency between these two groups for the type II

diabetes-susceptibility allele in the PPARGC1A gene sup-

ports the notion that this SNP, or SNPs in close LD to this

SNP, play an important role in type II diabetes etiology in

this area of the world.

PPARGC1A, or peroxisome proliferator-activated recep-

tor-g coactivator 1a, is a transcriptional co-activator that

regulates the transcription of genes involved in adaptive

thermogenesis, adipogenesis and oxidative metabolism39

and also regulates hepatic glucose output through the

control of gluconeogenesis.40,41 The susceptibility allele at

PPARGC1A changes a glycine to serine at codon 482 and

transfection assays have demonstrated that this substitu-

tion affects the protein’s efficiency as a coactivator on the

Tfam promoter, which may result in altered mitochondrial

function and insulin resistance.42

Linkage analyses have also identified the PPARGC1A

genomic region as a candidate locus for type II diabetes

in the Pima Indians.43 However, as the frequency of the

susceptibility allele in the Pima is only 0.18,44 which is

lower than in Europeans (0.37),45 it is unlikely that this

allele accounts for the observed high prevalence of type II

diabetes in the Pima compared to European-Americans.3

It has previously been suggested that the Polynesians

underwent strong selection pressures for energetic effi-

ciency during their settlement of the Pacific, which

required long open ocean voyages in the face of cold stress

and starvation.46–49 According to the thrifty gene hypo-

thesis,50 such conditions may have led to positive selection

for a thrifty metabolism in Polynesians and driven type II

diabetes-susceptibility alleles to high frequency. Thus, past

Table 2 Frequencies in the three populations and population pairwise Fst values for 10 type II diabetes-associated SNPs. Fst
values of particular interest are in bold with P-values in parantheses

Susceptibility allele frequency Population pairwise Fst (empirical P-value in parantheses)

Locus name China New Guinea Polynesia China – New Guinea China – Polynesia New Guinea – Polynesia

ABCC8 0 0 0.04 NA 0.017 0.021
ADRB2 0.05 0 0.15 0.034 0.024 0.126
CAPN10 SNP_43 0.05 0.18 0.15 0.050 0.024 �0.023
CAPN10 SNP_44 0.24 0.02 0.17 0.165 �0.021 0.099
GYS1 0 0 0 NA NA NA
IRS1 0.03 0 0 0.004 0.005 NA
KCNJ11 0.34 0.25 0.3 0.003 -0.024 �0.017
PPARG 0.95 1 1 0.020 0.018 0.000
PPARGC1A 0.37 0 0.72 0.369 (0.1151) 0.194 (0.0906) 0.703 (0.0068)
SLC2A1 0.24 0.43 0.63 0.061 0.254 (0.0520) 0.059
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Figure 1 Fst distributions for each population pairwise comparison generated from the 100K SNP set. The Fst values of the PPARGC1A
susceptibility allele is indicated by a dotted line and is shown in boxes along with the respective P-values.
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positive selection may at least partially explain the high

prevalence of type II diabetes among contemporary

Polynesian populations when compared to their neighbors

in New Guinea without the heightened susceptibility.

Several studies have demonstrated that a useful approach

to detecting the signature of positive selection in popula-

tions under different selective pressures is to identify

SNPs with high Fst values.51–54 Thus, the unusually

high frequency of the PPARGC1A susceptibility allele in

Polynesians may reflect past positive selection.

Regardless of whether drift or selection is responsible for

the high frequency of this allele in Polynesians, the

fact remains that Polynesians exhibit both unusually

high frequencies of type II diabetes, and unusually high

frequencies of a known type II diabetes susceptibility allele.

These two results indicate that the PPARGC1A suscept-

ibility allele is a strong candidate for explaining the high

frequency of type II diabetes in Polynesians and merits

further investigation. Moreover, our results indicate

that searching in candidate genes for alleles that exhibit

large frequency differences between populations is a

useful approach for identifying potential candidates for

the genetic basis of phenotypic traits that vary greatly

between populations.
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