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Prion disease genetics
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Prion diseases have stimulated intense scientific scrutiny since it was proposed that the infectious agent was
devoid of nucleic acid. Despite this finding, genetics has played a key role in understanding the
pathobiology and clinical aspects of prion disease through the effects of a series of polymorphisms and
mutations in the prion protein gene (PRNP). The advent of variant Creutzfeldt–Jakob disease has confirmed
one of the most powerful human genetic susceptibility factors, as all tested patients have an identical
genotype at polymorphic codon 129 of PRNP. This review will also consider the accrued reports of inherited
prion disease and attempt a genotype–phenotype correlation. The prospects for detection of novel genetic
susceptibility factors using mouse models and human genetic association studies will be explored.
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Prion diseases are a group of human and animal neuro-

degenerative conditions that have in common a key role

for the prion protein in their pathogenesis. Tradition-

ally, human prion diseases are clinically classified as

Creutzfeldt–Jakob disease (CJD), Gerstmann–Straussler–

Scheinker syndrome (GSS), fatal familial insomnia (FFI)

and kuru. They may also be classified by aetiology as

acquired (transmitted between animals or humans), in-

herited or sporadic (unknown cause). The primacy of a

single protein in a disease with these diverse mechanisms is

unique in biology.

There is now overwhelming evidence to support the

‘protein-only’ hypothesis of prion disease. The infectious

agent of prion diseases is critically comprised of abnormal

isoforms of a protein (PrP) encoded by PRNP. A disease-

associated isoform of PrP acts as a template to promote the

conversion of normal PrP to the pathological state.1 The

normal prion protein is widely expressed and bound to the

cell-surface by a glycosylphosphatidylinositol anchor, its

function is unknown. PrP has an unstructured N-terminal

domain of around 100 amino acids, and a structured

C-terminal domain of similar size, which includes a single

disulphide bond and two glycosylation sites. It is hypo-

thesised that a range of abnormal PrP conformations and

glycosylation states provides the basis for multiple prion

‘strains’ with consistent clinicopathological correlates (eg

Bruce et al2). The genetic determinants of prion strain-type

are beyond the scope of this review.

Human and mouse genetics have made major contri-

butions to prion disease research. Perhaps most prominent

among these was the linkage to chromosome 20 and

mutation discovery in PRNP in families with dominantly

inherited neurodegenerative diseases.3,4 The fact that

heterogeneous diseases caused by mutation of PRNP were

known to be transmissible to laboratory animals obviated

the need to the search for a cryptic infectious organism. A

great deal is now known about the inherited prion diseases

(IPD) as molecular genetic diagnosis has been available for

over a decade. An explanation for the heterogeneity of this

category has the potential to provide useful insights into

the pathogenesis of the group as a whole.

PRNP comprises two exons (three in mice) with the

entire open reading frame contained within the larger

second exon. The two domains of PrP are distinct in terms

of the corresponding genetic variation of PRNP (Figure 1).

Codons 51–91 of the N-terminal domain encode a 5-mer
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repeat region consisting of a nonapeptide followed by four

identical octapeptides. Alterations in the number of repeats

are found as polymorphisms and pathogenic mutations,

but there are no point mutations or common single-

nucleotide polymorphisms (SNP) in this region. Point

mutation causing IPD and a series of SNPs are found in

the C-terminal domain. A common coding polymorphism

at codon 129 of PRNP between methionine and valine

(c.385A4G) has a critical role in susceptibility and

modification of prion disease.

In the last decade, prion diseases have provoked parti-

cular public and scientific scrutiny because of the epidemic

of bovine spongiform encephalopathy in the UK and other

European countries and the subsequent demonstration of

its transmission to the human population as a new

phenotype of acquired prion disease, variant Creutzfeldt-

Jakob disease (vCJD).5,6 Acquired prion diseases are known

to have long silent incubation times and so uncertainty

remains about the eventual size of the outbreak of vCJD.7

With justification, there is a strong suspicion that genetic

susceptibility loci will be of importance.8

Inherited prion disease
All familial concurrence of prion disease is accounted for

by mutation of PRNP, which in total are responsible for

10–15% of the incidence of prion disease.9,10 There are

three types of pathogenic PRNP mutation: point mutations

leading to an amino-acid substitution or premature stop

codon, and insertion of additional octapeptide repeats

(OPRI) (Figure 1). Over 30 different mutations have been

described: some are typically associated with particular

clinical categories of prion disease; others are associated

with a spectrum of clinical phenotypes, often with striking

phenotypic variability. Despite the rarity of PRNP muta-

tion, the protracted clinical course of some IPDs leads to a

high population prevalence relative to sporadic and

acquired prion diseases.

Historically, variation in clinical phenotype of IPD has

been encapsulated by three clinical categories: GSS (Gerst-

mann, 1936, reviewed by Hainfellner et al11), FFI12, and

familial Creutzfeldt–Jakob disease (fCJD) (Jakob, 1923,

described by Brown et al13). The description of these

syndromes predates molecular genetic diagnosis. The core

features of these categories include slow progression of

ataxia followed by later onset dementia in GSS; refractory

insomnia, hallucinations, dysautonomia and motor signs

in FFI; and rapidly progressive dementia, with myoclonus

and pseudoperiodic discharges on electroencephalo-

gram in fCJD. The clinical categories of IPD may be

seen as extremes of phenotype, in reality the syndromes

overlap considerably. With the development of genetic

Figure 1 Definite or suspected pathogenic mutations are shown above this representation of the prion protein gene. Neutral or prion disease
susceptibility/modifying polymorphisms are shown below. Nucleotide changes for those pathogenic mutations not discussed in the text are as follows:
P105L (c.314C4T), G114V (c.341G4T), A117V (c.350C4T), G131V (c.392G4T), Y145X (c.435T4G), R148H (c.443G4A), Q160X (c.478C4T),
V180I (c.538G4A), T183A (c.547A4G), H187R (c.560A4G), T188A (c.562A4G), T188 K (c.563C4A), T188R (c.563C4G), E196K (c.586G4A),
F198S (c.593T4C), D202N (c.604G4A), V203I (c.607G4A), R208H (c.623G4A), V210I (c.628G4A), E211Q (c.631G4C), Q212P (c.635A4G),
Q217R (c.650A4G), M232R (c.695T4G) and M232T (c.695T4C). Nucleotide changes for synonymous changes not discussed in the text are as
follows: P68P (c.204T4C), A117A (c.351A4G), G124G (c.372C4G), V161V (c.483G4A), H177H (c.531C4T), Q212Q (c.636G4A), R228R
(c.684A4G), S230S (c.690G4A).
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diagnosis, the usefulness of the clinical categories has

waned.

A number of surveillance reports and screening studies

provide useful data about the epidemiology and impor-

tance of IPD. Mutation screening of dementia has shown

that prion disease is a frequent cause of inherited early

onset dementia. Finckh et al,14 for example, tested four

genes (APP, PSEN1, PSEN2 and PRNP) in 36 patients with

familial early onset dementia and found PRNP accounted

for 4/12 mutation positive cases. A general epidemiological

account of IPD is problematic, however, for a number of

reasons. Firstly, there is considerable geographical variation

in the incidence of IPD related to the population genetic

effects of drift and migration on ancestral mutations.

Secondly, an accurate incidence of IPD as a proportion of

the totality of prion disease is difficult because of the poor

overall ascertainment of prion disease. An autopsy study

found that 40% of cases of neuropathological prion disease

were undiagnosed while alive.15 Indeed, for some IPD,

notably OPRI, the neuropathological features are subtle

and might be overlooked without PrP immunocytochem-

istry (eg Case VII).16 These issues are compounded by the

phenotypic scope of IPD, which overlaps those of the

common causes of dementia in old age. The referral of

cases to national CJD surveillance units is likely to be

biased to the phenotype of sporadic CJD rather than

Alzheimer’s disease. Despite these issues, a number of units

have reviewed the population incidence of IPD. In

Germany, Windl found 40 cases of IPD from 578 suspect

prion disease cases referred to a surveillance unit.10 In total,

13/40 cases were found to have D178N, 8/40 had E200K,

7/40 had P102L, 6/40 had V210I (c.628G4A) and 5/40 had

OPRI. In France, however, Laplanche did not detect any

D178N cases out of 57, but 8/57 had E200K.17 For Italian

IPD, Pocchiari et al18 found 6/38 with D178N, 2/38 with

P102L, and 30/38 with either E200K or V210I. In Finland,

12 familial cases out of 44 prion disease patients all had the

D178N mutation.19 Goldfarb et al20 found that 45/54

worldwide families with IPD had the E200K mutation, 6/54

had D178N. In the UK, a single type of 6-OPRI mutation is

the most frequently detected PRNP mutation. It remains to

be seen if the large populations of South and East Asia will

have a similar epidemiology of IPD, but if a generality is to

be made in the absence of data from these regions, the

most common worldwide PRNP mutations are E200K,

D178N, P102L, and OPRI. These mutations illustrate the

complexity of inherited prion disease well and will be

explored further below.

Of the case reports considered in this review, the four

common PRNP pathogenic mutations listed above com-

prised 350/492. Of the remaining 142 mutations shown in

Figure 1, A117V, F198S, V210I are of particular interest in

that they have been described in large pedigrees or

multiple families worldwide.21–24 A mutation at codon

145 generating a premature STOP codon is notable for a

prominent vascular deposition of PrP and marked tau-

protein histopathology.25,26 Some of the other mutations

occur in single cases or small families and their pathogeni-

city remains likely but unproven. In particular for genetic

counselling, a lack of clarity regarding pathogenicity and

penetrance is problematic.

Data collected from the 492 published cases are sum-

marised in Figures 2 and 3. Three mutations are notable for

their early age of onset, OPRI with insertion of more than

five repeats, G114V27 and H187R.28 These mutations are

associated with early neuropsychiatric symptoms and/or

premorbid personality problems. As the three mutations

are distributed across PRNP domains and different in type,

it is possible that this aspect of clinical phenotype is

consequent upon early age of onset of prion disease rather

than a specific mutation related phenomenon. Further

support for an association between age of onset and

clinical phenotype is evidenced by a strong negative

correlation between age of onset and duration of disease

in the IPD group as a whole (duration vs age, pearson

correlation �0.48, Po0.001, n¼264). One possible expla-

nation of this observation is deterioration in the ability of

the ageing brain to degrade the putative toxic component

Figure 2 (a) Age of onset and (b) duration of disease distribution
for 492 reported cases of inherited prion disease. In (b) the annualised
number of cases with a duration of disease of 11–15 years is shown as
15, 16–20 years as 20 and 21–30þ years as 30.
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of prion disease.29 A cluster of mutations towards the

C-terminal end of PrP, together with the small OPRI

mutations, share a late median age of onset and shorter

duration of disease, mimicking sporadic CJD. It is un-

known whether this is phenomenon specifically related to

these mutations, or a more general finding related to their

lower pathogenicity, later age of onset and the resulting

impact of age on phenotype.

The phenotypic variability of inherited prion disease is

striking when compared with other neurodegenerative

diseases. A multitude of possible explanations are only

beginning to be characterised. Known or suspected genetic

factors include the polymorphic codon 129 genotype of

the mutant and wild-type alleles, the haplotype back-

ground of the mutation and unlinked genetic susceptibility

loci. At the protein level, mutated PrPs appears to be able to

fold into a number of different pathogenic conformers (eg

Piccardo et al30 and our own observations). This diversity

may be partly constrained by PrP primary structure, known

as the conformation selection hypothesis.8 Diversity of PrP

conformation within a single pedigree may account for

phenotypic variability if different pathological conformers

have differing toxicity or neuropathological targeting

(Piccardo et al,30 Parchi et al,31 and our own observations).

A related issue is the possibility of a variable contribution

to the disease process from the product of the wild-type

PRNP allele (Chen et al32 and our own observations).

E200K (c.598G4A)
The typical clinical presentation is a rapidly progressive

dementia with myoclonus and pyramidal, cerebellar or

extrapyramidal signs. Median age of onset of 112 reported

cases (including some summarised data) was 58 with a

median duration of 7 months.20,33 –39 Although the age of

onset is slightly younger than that for sporadic CJD,

Kahana found no unique clinical features that distinguish

E200K patients from those with sporadic CJD.40 The

neuropathology is also similar to sporadic CJD, with an

absence of PrP plaques. However, in E200K patients with

129M homozygosity, a peculiar perpendicular stripe-like

PrP deposit has been described in the molecular layer of the

cerebellum.41

E200K is the most common cause of IPD worldwide. As

mutation occurs by deamination of a CpG dinucleotide, it

is not surprising that haplotype ancestry has shown

multiple occurrences in human history.20,42,43 Multiple

ancestral mutations have led to distinct geographical

clusters with a high incidence of disease, most notably of

Libyan Jews, which had prompted investigators to make an

epidemiological link with ingestion of sheep’s brain. At

least four separate mutational events are responsible for the

global distribution of the mutation.42 Clustering has led to

the occurrence of a small number of individuals homo-

zygous for the E200K mutation. These patients have a

slightly earlier age of onset at 50, but overall, the

homozygous and heterozygous phenotypes are similar,

confirming the true dominance of this PRNP mutation.44

Expressivity of E200K is highly variable, manifesting in a

wide range of age of onset of disease. Examination and

genetic testing of unaffected relatives detect asymptomatic

mutation carriers in old age, implying that penetrance is

incomplete. The codon 129 polymorphism may determine

these to a limited extent.39 The E219K polymorphism

(c.655G4A) may also modify phenotype.43 Atypical clin-

ical presentations include those with peripheral neuro-

pathy,37,45 supranuclear gaze palsy46 and with sleep

disturbance,36 the pathogenesis of these atypical presenta-

tions is not well understood.

Octapeptide repeat insertion (OPRI, typically
p.Q75_P76ins32_72)
Insertion of more than three additional octapeptide repeats

in the N-terminal region of PrP causes inherited prion

disease. Variability of clinical phenotype is again a major

theme: the median age of onset of 109 reported OPRI

patients (43 repeats) was 35 (range 21–82) and duration of

disease 7 years (range 3 months–21 years).47 –62 The

prototypic example is the insertion of an additional six

extra octapeptide repeats. This mutation has some histo-

rical importance as it was the first described PRNP

mutation, in a small UK family.3 Genealogical work by

Poulter and Collinge63 in 1992 demonstrated a common

ancestor of this small family and a larger pedigree with

over 50 affected individuals. In 2005, this pedigree

comprised over 80 affected individuals and 100 at-risk of

disease affording a detailed analysis of phenotype and its

determinants.

Clinical and pathological features of the UK pedigree are

again highly variable. Cortical dementia, often with

apraxia, is the core feature with additional neurological

signs including cerebellar ataxia, pyramidal, extrapyrami-

Figure 3 Age of onset (no fill) and duration of disease (grey fill) for
different PRNP mutations. Error bars show two times standard error of
the mean.
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dal, myoclonus, chorea, seizures in declining order of

frequency. Age of onset ranges from the third to the sixth

decade and duration of disease ranges from an aggressive

condition mistaken for sporadic CJD to a slowly progres-

sive neurodegenerative disease over more than two

decades. The polymorphism at PRNP codon 129 accounts

for a proportion of this variability. Insert carriers associated

with heterozygosity at codon 129 have a delayed age of

onset by around a decade compared with patients homo-

zygous at codon 129.63

The neuropathology of OPRI mutation has been studied

by Vital et al64 and King et al.65 The degree of spongiosis

and astrocytosis seen was highly variable between cases.

Obvious plaques of PrP deposition in the cerebellum were

only seen in those patients with 8- or 9-OPRI mutations.

For smaller OPRI mutations, PrP deposition was visualised

by immunocytochemistry as elongated deposits in the

molecular layer of the cerebellum (Figure 4).

The existence of a premorbid personality disorder in

prion disease was first reported in this pedigree, charac-

terised by criminality, aggression, delinquency and hyper-

sexuality.16 Other clinicians have ascribed psychiatric

symptoms in IPD to the early stages of a neurodegenerative

disease (eg Rodriguez et al27 and Laplanche et al61). The

presence of personality disorders with such an early onset

may indicate a role for the normal function of PrP in the

healthy brain that is abrogated by certain mutations. The

related issue of identifying clinical onset of inherited prion

disease will become increasingly important as treatments

become available.

A number of reports of prion disease associated with

small OPRI (o4 extra repeats) appear to have a distinct

phenotype relative to the larger repeat insertions, with a

lack of family history, later age of onset and shorter

duration. This has been noted by Croes et al,66 finding a

negative correlation between age of onset and size of the

insertion. Small insertions have been detected incidentally

or by population surveys.67 It remains possible that small

OPRI are neutral rare polymorphisms that CJD surveillance

units will occasionally detect in elderly patients referred

with otherwise sporadic CJD.

P102L (c.305C4T)
The P102L mutation, first reported in 1989 in a UK and US

family,4 is the archetypal example of the GSS syndrome

(Figure 4), which was later described in association with

the less frequently occurring F198S, A117V, P105L, G131V,

Y145X, H187R and some D178N mutations. Phenotypic

variability is once more a major feature to a similar extent

as OPRI: median age of onset in 52 reported cases was 50

(range 25–70) and median duration of disease was 4 years

(range 5 months–17 years).11,30,68 –71 The traditional GSS

phenotype of a slowly progressive ataxia with later

dementia is commonly found, but families with amyo-

trophic features72 and patients with a rapid course are seen.

Interestingly, in marked contrast to OPRI, there appears to

be only limited modifying effect of codon 129 in P102L

cases (median age of onset for 12 codon 129 homozygous

cases was 53 compared with a median age of 55 for 7

heterozygous cases).

D178N (c.532G4A)
This mutation was first reported in Finnish families with a

CJD-like illness.73 Subsequently, a large family case series

was reported by Medori et al,74 who described an untrea-

table insomnia, dysautonomia, and myoclonus. Histo-

pathologically, selective degeneration of the anteroventral

Figure 4 Typical histological features of inherited prion disease 4-OPRI (96 bp), D178N and P102L. Histopathologically, classical GSS is associated
with uni- or multicentric PrP plaques in the cerebellar and cerebral cortex with variable spongiform change and neurofibrillary tangles; FFI is associated
with anterior and dorsomedial thalamic atrophy with variable extrathalamic spongiosis and gliosis; and classical fCJD is associated with cortical
neuronal loss, spongiosis, gliosis and variable PrP deposits. 4-OPRI shows stripe-like deposits of PrPSc in the molecular layer of the cerebellum, D178N
shows spongiform change and ‘fluffy’ deposits of PrPSc and P102L shows multiple unicentric plaques of PrPSc deposition. Immunohistochemistry with
prion protein antibody ICSM35 is shown. Scale bar is 150 mm.
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and dorsomedial thalamus was seen with cortical pathology

and weak PrP immunocytochemical staining (Figure 4).

This clinicopathological description is termed FFI. In 1992,

Goldfarb et al75 established a haplotypic relationship

between codon 129 and 178, whereby the mutation on a

129M chromosome leads to FFI, and the mutation on a

129V chromosome leads to familial CJD. More recent

experience questions such a tight association between

haplotype and phenotype: some families do not obey the

rule,76 there are pedigrees that segregate both the FFI and

CJD phenotype,77 and it has become increasingly recog-

nised that autonomic and sleep disturbances may accom-

pany other PRNP mutations, sometimes overtly.36 Cases

reported to the CJD surveillance unit in Germany were less

clinically distinct than the first reported FFI families in that

none were clinically diagnosed as FFI due to an absence of

obvious insomnia and no positive family history was

obtained in 4/9.78 Pocchiari et al18 noted that of patients

presenting with overt sleep disturbance to a CJD unit, 4/9

had sporadic CJD, 1/9 had a V210I mutation, but none had

D178N. Of the 72 case reports reviewed here, the median

age of onset was 50 (range 20–71) and median duration of

disease was 11 months (range 5 months–4 years).

PRNP polymorphisms and prion disease suscept-
ibility
The coding sequences of mammalian prion protein genes

are highly conserved, in a similar way to other structured

proteins, presumably by deleterious selection against

coding mutations. Despite this conservation, a number of

human coding polymorphisms have been characterised in

different populations that achieve intermediate frequen-

cies.79,80 First and foremost among these is a polymorph-

ism at PRNP codon 129 between methionine and valine,

which has a strong disease susceptibility and phenotype

modifying effect.81 There are marked differences in codon

129 allele frequency worldwide: in the UK and Northern

European population, the 129M allele frequency is around

0.65 with a slightly increasing cline through Europe into

Africa79,82 and a marked increasing cline through

Asia,67,83,84 129V is rare in Japan. 129V is the more

frequent PRNP allele in only two regions: the Eastern

Highlands of Papua New Guinea (PNG) at 0.55, and some

Native American populations. A polymorphism at codon

219 between glutamine and lysine (E219K, c.655G4A),

found in East Asian populations, also has a profound effect

on susceptibility to prion disease.83 Polymorphisms at cod-

ons 14279 (G142S, c.424G4A) and 171 (N171S, c.512A4G),

most frequent in African populations, have not been

tested for disease susceptibility effects. A 1-octapeptide

repeat deletion (1-OPRD), of which there are differing genetic

types with identical protein products, occurs as an

uncommon polymorphism in the European population.

There is good evidence that 1-OPRD has no susceptibility

effect in sporadic CJD.85

Codon 129 has a susceptibility or modifying effect in all

categories of prion disease. Variant CJD demonstrates this

effect most dramatically: all genetically tested cases have

been homozygous for 129M.86,87 A single codon 129

heterozygous patient, who had received blood from donor

subsequently diagnosed with vCJD, was found to have

widespread prion protein deposition in the peripheral

lymphoreticular system at autopsy, having died of an

unrelated cause.88 It remains to be seen whether indi-

viduals of different genotypes will succumb to vCJD, or a

similar phenotype of prion disease, in the BSE-exposed UK

and other European populations. Thankfully, the annual

incidence of vCJD appears to be declining, although it will

be some time before it will become clear whether the

disease is in permanent decline.7

Outbreaks of acquired prion disease have been caused by

human–human transmission of prions by cadaver derived

growth hormone injections, the use of dura mater in

neurosurgery, corneal transplantation, and intracerebral

electrodes. These outbreaks have remained small due to the

limited exposed group but patients with a heterozygous

genotype at codon 129 are protected. Our largest experi-

ence of an acquired human prion disease comes from kuru:

a devastating epidemic of prion disease spread by ritualistic

cannibalism in the Fore and neighbouring linguistic

groups of the Eastern Highlands of PNG. At its peak in

the 1950s, kuru was the leading cause of death in young

women in the South Fore. Although precise epidemiologi-

cal data are not available, both methionine and valine

homozygous individuals had a mean onset of disease in

early adulthood, whereas heterozygous individuals had a

delayed onset into middle age.89 Such a high disease

incidence, coupled with the effect of heterozygosity to

delay disease onset through reproductive age, affords the

opportunity for strong selection pressure. Surviving elderly

women in the present-day South Fore population, who

lived through the epidemic, show marked Hardy–Wein-

berg disequilibrium at PRNP with an excess of codon 129

heterozygosity, illustrating the population genetic effect of

the kuru epidemic.79,90 The strong evolutionary selection

pressure in favour of prion disease resistance alleles in the

Fore population provides an opportunity to test for the

presence of other resistance loci.

Sporadic CJD also shows a susceptibility effect at both

codon 129 and 219. Again, the susceptible individuals are

homozygous for codon 129M or 129V. At codon 219, the

rarity of the 219K allele precludes inference about hetero-

zygosity; however, no cases of sporadic CJD with either one

or two 219K alleles have ever been reported.83

The search for other prion disease susceptibility loci
The laboratory mouse has proved to be a useful genetic

model of acquired prion disease. After intracerebral
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inoculation with prions, mice succumb after an incubation

time that may vary from 100 days to a natural lifespan.

Many factors influence this time: the route of inoculation

(brain shortest, oral longest), dose, prion strain and

species the inoculum was derived from, and importantly,

the genetic background of the recipient. When these

are controlled for, intracerebral inoculation of defined

inbred mouse strains in a laboratory environment results

in population incubation times with remarkably small

variation. It is now well established that different inbred

mouse strains have distinct incubation times, a finding

first reported by Dickinson and MacKay in 1964.91

Prnp alleles are a major, but not the only, contributor

to this phenotypic variability. Haplotypes comprised of

alleles at codons 108 and 189 of the mouse prion protein

gene confer a short or long incubation time.

The use of prion disease incubation time in mice as a

quantitative trait has prompted a series of mapping studies.

These utilise a backcross or an F2-intercross of inbred

mouse strains with indentical Prnp alleles. Over 20 loci

have been mapped on eight mouse chromosomes,

although to-date, none of quantitative trait nucleotides

(QTN) responsible for these loci have been characterised.

Fine mapping of these loci is underway using congenics

and alternative genetic strategies.

Human studies have been similarly unsuccessful, suffer-

ing from necessarily small sample sizes related to the

rarity of prion disease and the lack of technology for a

true genome-wide association study. Various candidate

regions have been examined, including putative

polymorphisms of regulatory regions of PRNP. Strong

linkage disequilibrium exists around PRNP including at

least 10 kb of upstream sequence leading to two major

haplotype groups in the European population containing

either 129M or 129V.92 One methionine haplotype was

found to be overrepresented in a series of sporadic CJD

patients, but the effect was small and this finding has

not been replicated. Similarly, a putative association of

vCJD and the HLA-DQB7 serogroup has not been replicated

in a larger sample.93,94 The prion-like doppel gene

(PRND)95–99 and APOE genotypes100,101 have also been

tested for association with prion disease, with inconclusive

results.

Despite the rarity of human prion disease and the

current lack of success in identifying new susceptibility

genes, there should still be optimism as the technology for

genome-wide association study will very soon be available.

The rewards for a detailed understanding of prion disease

susceptibility, including the identification of high-risk

groups, improving animal models, and rational therapeu-

tics, are potentially significant.
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