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Cox proportional hazards survival regression in
haplotype-based association analysis using the
Stochastic-EM algorithm
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It is now widely recognized that haplotype information inferred from genotypes can be of great interest to
better characterize the role of a candidate gene in the etiology of a complex trait in the context of
association studies. Several works have recently advocated the simultaneous estimation of haplotype
frequencies and haplotype effects in order to get a better efficiency in parameter estimation. Most of the
available models can deal with a binary or a quantitative phenotype, but none has yet discussed the
application of haplotype-based association analysis to a survival outcome. We describe how the recently
proposed Stochastic-EM (SEM) algorithm can be applied to estimate haplotype effects in censored data
analysis using a standard Cox proportional hazards formulation. This model has been implemented in the
THESIAS software freely available at http://www.genecanvas.org
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Introduction
It is now widely recognized that haplotype information

inferred from genotypes can be of great interest to better

characterize the role of a candidate gene in the etiology of a

complex trait.1 –4 Haplotype-based analysis may help in

differentiating the true effect of a polymorphism from

what is due to its linkage disequilibrium with other

variant(s). Haplotypes may serve as better markers for

unknown functional variants than single polymorphisms.

Lastly, they may define functional units whose effects

cannot be predicted from what is known of the individual

effect of each variant. This explains the large amount of

work that has been devoted to the development of

statistical tools for making haplotype inference.4–14 It is

now widely admitted that haplotype frequencies

and haplotype effects have to be estimated simultaneously

in order to get a better efficiency in parameter

estimation.4,7,8,11 –14 To our knowledge, available models

allowing this joint estimation can deal with a binary and/

or a quantitative phenotype, but none has yet discussed

the application of haplotype-based analysis to a survival

outcome. The objective of this work is to describe how our

recently proposed Stochastic-EM (SEM) algorithm13 can be

extended to apply to an haplotype-based analysis of

censored data using a standard Cox proportional hazards

formulation.15

System and methods
Consider a sample of N unrelated individuals and let (T̃i, Di,

Gi) denote the ith individual’s triplet where T̃i¼Ti4Ci with

Ti being his/her failure time or Ci his/her censoring time,

Di¼ I(TirCi) and Gi being his/her genotypic vector at k

different loci. For ease of presentation, only the case of di-

allelic polymorphisms will be addressed here and we

assume that Gi does not include any missing genotype

even if these assumptions can be easily relaxed.13 The

number of possible haplotypic pairs compatible with Gi isReceived 24 February 2004; revised 4 May 2004; accepted 5 May 2004
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2ci�1 where ci is the number of loci where the ith individual

is heterozygous. Except when cir1, the true haplotypic

pair of the ith individual cannot be unambiguously

deduced from Gi. Would the haplotypic pair Hi¼ (hi1, hi2)

of the ith individual be observed, the contribution of this

individual to the likelihood of the sample under the

standard Cox formulation would be

½lT=Hi
ð ~TTi; bÞ�DiST=Hi

ð ~TTi; bÞ
¼ ½l0ð ~TTiÞ expðbi1 þ bi2Þ�DiST=Hi

ð ~TTi; bÞ

where l0(t) is an unspecified baseline hazard function and

ST=Hi
ð ~TTi; bÞ is the survival function at time T̃i. In this

modeling, ebi1 and ebi2 represent the hazard risk ratios

(HRRs) for the survival outcome associated with haplotypes

hi1 and hi2, respectively, by comparison to a reference

haplotype (which can be taken as the most frequent

haplotype, for example), under the assumption of additive

haplotype effects. ST=Hi
ð ~TTi; bÞ is defined by

exp �
Z~TTi

0

lT=Hiðs; bÞds

0
B@

1
CA

¼ exp � expðbi1 þ bi2Þ
Z~TTi

0

l0TðsÞds

0
B@

1
CA

¼ expð� expðbi1 þ bi2ÞLð ~TTiÞÞ

where L(T̃i) is the cumulative hazard function at time T̃i

whose estimation will be detailed thereafter.

Algorithm
The SEM algorithm whose general description for haplo-

type-based association analysis has been given previously13

is an iterative algorithm where, at each iteration, any

ambiguous haplotypic pair, considered as missing data, is

replaced by a simulated value drawn from its conditional

distribution given the observed data and the parameters

obtained from the previous iteration.

The vector of parameters to be estimated, y, is composed

of the haplotype frequencies f(hl) (l¼1ys) (sr2k) and the

logarithm of the haplotypic HRRs, bl (l¼1ys). The

(mþ1)th iteration consists of two steps, the stochastic

imputation step and the maximization step that take the

following forms in the context of a Cox survival haplotype

analysis.

The Stochastic-Imputation step

The unobserved haplotypic pair of an ambiguous indivi-

dual i is set at a single draw from the distribution of

haplotypic pairs H specified by P(H/T̃i, Di, Gi) evaluated at

y(m), the current vector estimated parameter at the mth

iteration, and defined by:

½expðbðmÞHÞ�Di expð� expðbðmÞHÞL̂LðbðmÞ; ~TTiÞÞPðHÞP
j2SðGiÞ

½expðbðmÞHjÞ�Di expð� expðbðmÞHjÞL̂LðbðmÞ; ~TTiÞÞPðHjÞ
ð1Þ

where S(Gi) is the set of all haplotypic pairs Hj such that

Hj¼ (hj1, hj2) is compatible with Gi and where P(Hj) is a

function of the current estimated haplotype frequencies

f(m)(hl).

The Maximisation step

With the pseudo-completed sample, a likelihood maximi-

zation routine is then used to obtain updated parameters

y(mþ1). This can be decomposed into two parts. First,

haplotype frequencies are obtained by counting the

pseudo-observed haplotypic pairs Hi¼ (hi1, hi2) under the

assumption of Hardy–Weinberg equilibrium (HWE). Then,

the logarithm of the haplotypic HRRs are independently

updated by the standard maximum likelihood (ML)

estimates obtained from the partial Cox likelihood per-

formed on the pseudo-completed data where the haplo-

typic pair of any individual is now considered to be

observed, that is, by maximizing the following likelihood:

YN
i¼1

expðbi1 þ bi2ÞPN
n¼1

expðbn1 þ bn2ÞIð ~TTi 	 ~TTnÞ

2
6664

3
7775
Di

ð2Þ

Given the updated b(mþ1), the cumulated hazard func-

tion is then updated according to the Breslow estimates16

used in the context of Cox proportional hazards analysis.

To initialize the algorithm, a starting value y(0) must be

provided. For example, all bl’s can be set to 0 and haplotype

frequencies can be calculated assuming that all poly-

morphisms are in linkage equilibrium, that is, are the

product of allele frequencies.

Let M be the total number of iterations of the SEM

algorithm. The properties of the generated sequence of

{y(m)}, m¼1yM, are detailed elsewhere.17,18 The main

results are that the sequence of {y(m)} does not converge

pointwise but composes a Markov chain that rapidly

converges, under regularity conditions, to a stationary

distribution.18 The stationarity is obtained after a suffi-

ciently long ‘burn-in’ period and the point estimate ~yy is

then simply the mean of the y(m) within this stationary

distribution. The resulting SEM estimate ~yy has been shown

to be asymptotically equivalent to the ML estimate y in the

exponential family case17 and this equivalence has been

observed in many other situations.

Once the SEM estimate ~yy is obtained, we propose as

parameter variance estimates those obtained by inverting

the Fisher information matrix derived from the following
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likelihood expression evaluated at ~yy:

YN
i¼1

P
j2SðGiÞ

PðHjÞ expðbj1 þ bj2Þ
 !, P

j2SðGiÞ
PðHjÞ

PN
n¼1

Ið ~TTi	 ~TTnÞ
P

j2SðGnÞ
PðHjÞ expðbj1þbj2Þ

 !, P
j2SðGnÞ

PðHjÞ
 !

2
66664

3
77775

Di

ð3Þ

Finally, evaluating (3) at ~yy provides an estimation of the

partial Cox likelihood of the sample that can then be used

for hypothesis testing by means of the likelihood ratio test

statistics.

Discussion
In this report, we proposed a flexible model allowing the

joint estimation of haplotype frequencies and haplotype

effects in a context of survival analysis. This model is based

on the Cox formulation15 that is considered as a standard

in proportional hazard analysis. The estimates provided by

the proposed SEM algorithm are expected to be close to the

ML estimates even though the theoretical equivalence

between the SEM and ML estimates has not been fully

demonstrated in the case of the partial Cox likelihood. We

compared on two real data sets,19,20 the results provided by

the proposed SEM algorithm to those obtained by a

standard ML method for survival data analysis. However,

since the implementation of a partial Cox likelihood with

missing data (ie ambiguous haplotypes) is not easily

tractable and can be quite computationnally cumbersome

by use of the standard Newton–Raphson (NR) algorithm,13

we implemented a parametric Weibull model21 in our

previous NR-based method for haplotype-association ana-

lysis,4,22 and we compared estimates obtained by the two

methods. Results of these comparisons are available online

(httt://www.genecanvas.org). Even though the Cox and

Weibull models are quite different in terms of the

mathematical formulations and assumptions, they have

been shown to produce similar results in many situations

and the similarity between the parameter estimates

provided here by both methods strengthened our con-

fidence about the validity of the SEM algorithm. The

limitations of the current model are the assumption of

HWE at the haplotypic level and that of proportional

hazards. Note, however, that the assumption of HWE is less

questionable and more reasonable here in the whole

population of a cohort than in a case–control design. It

would also be interesting to develop a statistical tool to

assess the goodness-of-fit of the Cox proportional hazards

assumption under the framework of a haplotype-based

association analysis.

While this manuscript was reviewed, a similar approach

based on the EM algorithm was proposed.23 Even though

the SEM and EM algorithms are expected to be asympto-

tically equivalent, it would be interesting to compare them

in situations where asymptotic properties may not be valid,

in particular in the case of rare haplotypes. Ambiguous

haplotypes can be considered as variables observed with

measurement error that would be a function of the LD

pattern between the studied polymorphisms. Application

of statistical methods dealing with errors in variables in

Cox regression analysis24–26 may then be envisaged in the

context of haplotype analysis and would deserve further

attention.

This model has been implemented in the THESIAS

program that can also deal with a quantitative or a binary

phenotype, both under a standard and a matched (using a

similar partial likelihood as that described above) case

–controls designs. Our model is general enough to incor-

porate information on additional covariates and to test for

the deviation from the hypothesis of additivity of the

haplotypic effects. THESIAS is written in ANSIC and is

available free of charge from http://www.genecanvas.org.

THESIAS has already been used by different groups for real

data analysis, either for a binary, a quantitative or a

survival outcome and appears to be a tool of great

usefulness for haplotype-based association study.
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