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The genetic basis of cardiovascular disease (CVD) with its complex etiology is still largely elusive. Plasma
levels of lipids and apolipoproteins are among the major quantitative risk factors for CVD and are
well-established intermediate traits that may be more accessible to genetic dissection than clinical
CVD end points. Chromosome 19 harbors multiple genes that have been suggested to play a role in lipid
metabolism and previous studies indicated the presence of a quantitative trait locus (QTL) for cholesterol
levels in genetic isolates. To establish the relevance of genetic variation at chromosome 19 for plasma
levels of lipids and apolipoproteins in the general, out-bred Caucasian population, we performed a linkage
study in four independent samples, including adolescent Dutch twins and adult Dutch, Swedish and
Australian twins totaling 493 dizygotic twin pairs. The average spacing of short-tandem-repeat markers
was 6–8 cM. In the three adult twin samples, we found consistent evidence for linkage of chromosome 19
with LDL cholesterol levels (maximum LOD scores of 4.5, 1.7 and 2.1 in the Dutch, Swedish and Australian
sample, respectively); no indication for linkage was observed in the adolescent Dutch twin sample. The
QTL effects in the three adult samples were not significantly different and a simultaneous analysis of the
samples increased the maximum LOD score to 5.7 at 60 cM pter. Bivariate analyses indicated that the
putative LDL-C QTL also contributed to the variance in ApoB levels, consistent with the high genetic
correlation between these phenotypes. Our study provides strong evidence for the presence of a QTL
on chromosome 19 with a major effect on LDL-C plasma levels in outbred Caucasian populations.
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Introduction
Dissecting the genetic basis of cardiovascular disease (CVD)

is complicated by the etiologic heterogeneity of seemingly

undistinguishable clinical end points. Major quantitative

risk factors for CVD such as cholesterol levels may be more
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accessible to genetic dissection.1 Also, individuals do not

need to be classified as affected or unaffected for these

quantitative variables, which often leads to ambiguous or

uncertain phenotype assignment. Genes described to date

that play a role in lipid metabolism have mainly been

identified in familial lipid disorders, many of which are

monogenic diseases. For example, defects in the genes

encoding the low-density-lipoprotein-receptor (LDLR,

19p13.2)2 and apolipoprotein B (APOB, 2p24)3 are found

to be responsible for the most common forms of familial

hypercholesterolemia, and mutations in the ABC1 gene

(9q31.1), encoding the cholesterol efflux regulatory pro-

tein, induce familial HDL cholesterol deficiency (Tangier’s

disease).4 Although carriers of such mutations may develop

severe disorders of lipid metabolism, these mutations

explain only a minor proportion of the variation in plasma

levels of lipids and apolipoproteins at the level of the

general population.5 The results of twin studies showing

that 50–80% of the population variation in levels of lipids

and apolipoproteins is attributable to genetic factors6,7

thus imply that the majority of the genes determining

these levels are still to be discovered.

Chromosome 19 harbors several genes that have been

suggested to play a role in lipid metabolism including

the LDLR (19p13.2),2 the apolipoprotein E gene (APOE,

19q13.2)8 and other genes from the APOE/C1/C4/C2

cluster,9,10 the insulin-receptor gene (INSR, 19p13.3),11

the hormone-sensitive-lipase gene (LIPE, 19q13.1)12 and

the LDLR-related-protein-type3 gene (LRP3, 19q12).13

Compatible with this wealth of candidate genes, evidence

for linkage with plasma levels of total cholesterol was

found in Pima Indians and with LDL cholesterol levels in

Hutterites.14,15 In contrast to the findings in these genetic

isolates, however, no significant linkage with LDL-C levels

on chromosome 19 was found in genome scans among

outbred Caucasians.16–20 To gain insight into the effect of

genetic variation on chromosome 19 on lipid metabolism

in the general, Caucasian population, we performed a

linkage study in four twin samples originating from The

Netherlands, Sweden and Australia totaling 493 dizygotic

twin pairs.

Subjects and methods
Subjects

We studied samples of adolescent Dutch twins and adult

Dutch (sample on cardiovascular risk factors), Swedish

(Swedish Adoption/Twin Study of Aging) and Australian

twins (Semi-Structured Assessment for the Genetics of

Alcoholism). The recruitment of the twins and the

measurements of lipid and apolipoprotein levels in the

different samples are described elsewhere.7 In this study

we used 83 dizygotic (DZ) young Dutch twin pairs (aged

13–22 years), 117 DZ adult Dutch twin pairs (aged 34–62

years), 44 DZ Swedish twin pairs (aged 42–81 years) and

249 DZ Australian twin pairs (aged 31–80 years). All

relationships were confirmed with the Graphical Repre-

sentation of Relationship software21 using more than 100

short tandem repeats. Total cholesterol, HDL cholesterol,

apolipoprotein B, apolipoprotein AI, triglycerides and

apolipoprotein E levels were assessed in the plasma.

Concentrations of low-density lipoprotein (LDL) chole-

sterol were calculated according to Friedewald et al.22 If the

triglyceride concentration did exceed 4.52mmol/l, the

subject obtained a missing value for LDL cholesterol.23

Genotyping

In the four twin pair samples, 12 short tandem repeats with

an average intermarker distance of 8 centiMorgans (cM)

were genotyped (D19S247, D19S1034, D19S394, D19S714,

D19S49, D19S433, D19S47, APOC2, D19S246, D19S180,

D19S210 and D19S254). In the two Dutch samples, four

additional markers were genotyped (D19S391, D19S865,

D19S420, D19S178), resulting in an average spacing of

6 cM in the Dutch. The average heterozygosity for these

markers was estimated at 0.78 and the Marshfield genetic

map (http://research.marshfieldclinic.org/genetics/) was

used.

The Cy5-labeled PCR products were electrophoretically

separated on an automated-fluorescence DNA sequencer,

ALFexpress (Amersham Pharmacia Biotech). Analysis and

assignment of the marker alleles were performed with

Fragment Analyser 1.02 (Amersham Pharmacia Biotech).

To reduce genotyping errors, one known genotype was

present on each gel, 5% of the genotypings were repeated

and two independent individuals performed the allele

calling. SIBMED24 was used to identify unlikely double

recombinants, the occurrence of which may be due to

genotyping errors. After running SIBMED and checking the

raw genotyping data, approximately 0.2% of the total

genotypings appeared to be erroneous. Dependent on the

error, these genotypes were changed in the right genotype

or were set to missing.

Statistical analysis

Allele frequencies were estimated separately for the twin

samples using marker data for all individuals.25 Plasma

levels of triglycerides and apoE showed a skewed distribu-

tion and these values were therefore transformed by

natural logarithm prior to analysis. The full distribution

of multipoint identity-by-descent (IBD) sharing proba-

bilities was estimated every centiMorgan across chromo-

some 19 using Genehunter 2.1.26 Linkage analysis of

quantitative traits was performed with variance compo-

nents analysis using structural equation modeling with

maximum likelihood implemented in the software Mx

1.52d.27 The weighted likelihood approach, which makes

use of the full distribution of IBD-probabilities, with

adjustments for age and sex was used.28 In a four-sample

simultaneous analysis, IBD status for the DZ pairs was
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estimated separately for each of the four samples in

Genehunter 2.126 using population-specific allele frequen-

cies. Mean LDL-C levels, background genetic and non-

shared environmental effects were estimated for each

sample separately. The absolute QTL effects were con-

strained to be equal over the different samples. Hetero-

geneity between the effects of the QTL in the different twin

samples was tested by comparing the model estimating all

parameters for the populations separately with the model

in which the QTL effect was constrained to be equal.

Bivariate analyses29 were performed for correlated plasma

levels of LDL-C and apoB.

Results
The characteristics of the adolescent Dutch and adult

Dutch, Swedish and Australian dizygotic twins totaling 493

pairs are shown in Table 1.

The four twin samples were analyzed using variance

components analyses, which revealed a consistent indica-

tion for linkage with LDL cholesterol (LDL-C) levels

(Table 2). The maximum LOD scores (MLS) were 4.5, 1.7

and 2.1 in adult Dutch, Swedish and Australian twins,

respectively; no linkage was observed in the adolescent

Dutch twins. Lower levels of linkage were also observed for

the LDL-C levels correlated phenotypes total cholesterol

and apoB in the adult populations (Table 2).

As shown in Figure 1, linkage in the adult twins samples

was observed in the same chromosomal region suggesting

that the same QTL may be involved. This was reinforced by

the fact that the QTL effect was not significantly different

in the three adult populations at the positions where the

MLS were observed (P¼0.50, 34 cM pter; P¼ 0.13, 60 cM

pter; P¼0.06, 63 cM pter), whereas the QTL effect was

significantly different in the adolescent Dutch population

(eg P¼0.0001, 60 cM pter). Therefore, the adult popula-

tions were combined in one linkage analysis including 410

dizygotic twin pairs (Figure 1). This analysis increased the

MLS for LDL-C levels to 5.7 at 60 cM pter. Of the twin pairs

that individually contributed more than 0.20 to the MLS,

62% (18/29) were Dutch, 17% (5/29) were Swedish and

21% (6/29) were Australian.

LDL-C and apoB levels are highly correlated phenotypes,

both phenotypically (X0.79) and genetically (X0.79)

(Table 3) indicating that genetic variation influencing

LDL-C levels also influences apoB levels. Nevertheless,

the MLSs were considerably higher for LDL-C levels than

for apoB levels. To gain insight into the effect of the LDL-C

QTL on apoB levels, we performed a bivariate linkage

analysis of the two phenotypes at the position of MLS in

the adult samples. Although the confidence intervals were

wide and the estimates of the QTL effect not always

significant (Table 3), this analysis showed that the putative

QTL explained a considerable proportion of the variance in

apoB levels in addition to that of LDL-C levels.

Discussion
We have studied chromosome 19 for linkage with inter-

mediate lipid phenotypes of cardiovascular disease in

dizygotic twin pairs from the general population of The

Netherlands, Sweden and Australia. In all the adult twin

samples, we found evidence for linkage of chromosome 19

with LDL-C levels with MLS ranging from 1.7 to 4.5. In

spite of a large heritability of LDL cholesterol levels, which

was previously estimated in the adolescent and adult twin

samples between 0.60 and 0.85,7 no indication for linkage

was observed in the adolescent twin sample. This may be

due to partly different effects of genes on lipid levels at

different ages as suggested by Snieder et al30 or to different

gene–environment interaction on lipid levels at different

ages as suggested by Zerba et al31 The size of the QTL effect

on LDL-C levels was not significantly different in the adult

samples and a simultaneous analysis of these adult samples

increased the LOD score to 5.7 at 60 cM from pter. This

constitutes significant linkage according to the Lander–

Table 1 Characteristics of adolescent Dutch and adult Dutch, Swedish and Australian dizygotic twin samples

Adolescent Adult

Netherlands Netherlands Sweden Australia
Phenotype (n¼166) (n¼234) (n¼88) (n¼498)

Men, % 49.4 48.7 59.1 35.7
Age, years – mean (range) 17 (13–22) 44 (34–59) 65 (42–81) 44 (31–80)
Inter-marker distance, cM – mean (SD) 6.29 (4.18) 6.29 (4.18) 8.38 (4.02) 8.38 (4.02)
Body mass index (kg/m2) 20.28 (2.21) 24.64 (3.06) 25.21 (3.07) 25.44 (5.19)
LDL-C, mmol/l – mean (SD) 2.56 (0.65) 3.63 (0.99) 4.26 (1.07) 3.37 (1.07)
ApoB, g/l – mean (SD) 0.79 (0.17) 1.21 (0.35) 1.04 (0.21) 0.97 (0.28)
Total cholesterol, mmol/l – mean (SD) 4.15 (0.70) 5.39 (1.06) 6.50 (1.11) 5.64 (1.20)
HDL-C, mmol/l – mean (SD) 1.28 (0.26) 1.22 (0.38) 1.47 (0.34) 1.46 (0.41)
ApoAI, g/l – mean (SD) 1.38 (0.20) 1.67 (0.43) 1.39 (0.30) 1.44 (0.27)
Triglycerides, mmol/l – mean (SD) 0.68 (0.30) 1.22 (0.71) 1.62 (0.87) 1.90 (1.69)
ApoE, mg/dl – mean (SD) 6.59 (2.39) 2.54 (1.02) F (F) 4.18 (1.88)
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Kruglyak criteria.32 A bivariate analysis indicates that

the QTL also influences apoB levels as is consistent

with the fact that the majority of apoB protein circulates

as a constituent of LDL particles. Our linkage study thus

emphasizes the relevance of genetic variation on chromo-

some 19 for cardiovascular risk in the general population.

Previous studies reported evidence for linkage of chro-

mosome 19 with total cholesterol levels (MLS¼3.89) and

LDL-C levels (Genome-wide P-value¼ 0.035) in Pima

Indians14 and Hutterites,15 respectively. Our study extends

these findings in genetic isolates to the general, Caucasian

population. A further inspection of other genome scans in

Caucasians from the general population (Table 4) shows

that, although the reported LOD scores for chromosome 19

are not significant, they are compatible with our findings.

Linkage with LDL1-C levels in the San Antonio Heart Study

(LOD¼ 2.26) and with LDL2-C levels (LOD¼1.86),33 and

linkage with total cholesterol levels in the Rochester

Family Heart Study (LOD¼1.14).34 No suggestion for

linkage with total cholesterol or LDL-C levels, however,

was found in selected samples of myocardial infarction

patients, type II diabetes patients and patients with familial

combined hyperlipidemia.16–20 The LDL-C QTL on chro-

mosome 19 thus constitutes one of the most replicated

result from linkage studies, virtually ruling out the

possibility that it is a false-positive observation.

The region in which we and other groups (Figure 1,

Table 4) found evidence for linkage is broad, as is a general

characteristic of results from twin and sib pair studies. QTL

mapping in Drosophila melanogaster and Saccharomyces

cerevisiae demonstrated that linkage results at a broad

chromosomal region may be caused by several polymorph-

isms with a relatively small effect, which could be

interpreted as one gene with a major effect.35,36 Possibly,

several loci on chromosome 19 are influencing LDL

cholesterol levels and perhaps different loci play major

roles in Australian and European LDL cholesterol levels,

which might explain the different locations of the MLS.

However, the overall effect size of these loci is the not

significantly different in Dutch, Swedish and Australians.

The main candidates for underlying the LDL-C QTL on

chromosome 19 (Table 4) are the APOE/C1/C4/C2 gene

cluster and the LDLR and LRP3 gene loci. Apolipoprotein E

is the major constituent of chylomicrons, VLDL and IDL

particles and serves as ligand for the LDLR. When VLDL

and IDL are not efficiently removed from the circulation by

the LDLR, LDL particles will accumulate. The LDLR is also

known to play an important role in the clearance of apoB-

carrying-lipoproteins by the liver.2,37 Apolipoprotein C1 is

a constituent of VLDL and HDL particles. It inhibits the

lipoprotein lipase (LPL)-mediated hydrolysis of the trigly-

cerides from VLDL, which leads to lower levels of LDL-C.38

ApoC2 has the opposite effect on LDL-C levels, since it is

an activator of LPL.39 Although the function of apoC4 is

unknown, there are some indications that it might play a

role in lipid metabolism.10,40 The LRP3 is a family member

of the LDLR. It is also expressed in the liver and it binds

apoE-containing particles. The function of the LRP3

Table 2 Maximum LOD scores observed at chromosome
19 for lipid and apolipoprotein levels in adolescent Dutch
and adult Dutch, Swedish and Australian DZ twins

Phenotype Position from pter Max LOD score

LDL cholesterol
Adolescent Netherlands 98 0.5
Adult Netherlands 60 4.5
Adult Sweden 63 1.7
Adult Australia 34 2.1

ApoB
Adolescent Netherlands 98 0.3
Adult Netherlands 48 1.0
Adult Sweden 70 1.6
Adult Australia 80 0.5

Total cholesterol
Adolescent Netherlands 53 0.2
Adult Netherlands 60 2.3
Adult Sweden 63 1.3
Adult Australia 30 1.7

HDL cholesterol
Adolescent Netherlands 67 0.1
Adult Netherlands 32 0.5
Adult Sweden 34 0.2
Adult Australia 57 1.2

ApoA1
Adolescent Netherlands 0 0.1
Adult Netherlands 34 0.2
Adult Sweden 36 1.0
Adult Australia 51 1.5

Triglycerides
Adolescent Netherlands 52 1.2
Adult Netherlands 45 0.6
Adult Sweden 63 0.1
Adult Australia 63 0.2

ApoE
Adolescent Netherlands 69 1.0
Adult Netherlands 63 2.8
Adult Sweden F F
Adult Australia 66 0.1

0.0

0.5
1.0
1.5
2.0
2.5
3.0

3.5
4.0
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Figure 1 Linkage of LDL cholesterol levels with chromo-
some 19 in adult Dutch (green line), Swedish (black line)
and Australian (blue line) twins in separate analyses and a
combined analysis (red line).
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remains unclear, but as a family member of LDLR a role in

lipid metabolism is assumed.13 INSR and LIPE are candi-

dates for influencing triglyceride levels, but not for LDL-C

levels.11,12 Near the LDLR locus, the ATHS locus has been

mapped involved in atherogenic lipoprotein phenotype

pattern B, which is characterized by small, dense LDL

particles, increased levels of triglycerides and decreased

levels of HDL-C.41 Since we have no indication for linkage

with levels of triglycerides and HDL-C, we assume that the

ATHS locus is a different locus than our LDL-C QTL.

In conclusion, we report strong and significant evidence

for the presence of genetic variation at chromosome 19

with a major effect on LDL-C plasma levels in outbred

Caucasian populations. Since high LDL-C level is a major

risk factor for CVD, this finding may significantly con-

tribute to disentangling the complex architecture of CVD.

Candidate gene screening and the recently developed

method for the combined analysis of linkage and associa-

tion42,43 may reveal the genetic variation underlying the

QTL.
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