Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epidemiology

Role of lifestyle factors in the epidemic of diabetes: lessons learnt from India

Abstract

The prevalence of type 2 diabetes (T2D) is increasing steadily globally with the largest increases occurring in developing countries like India. This is attributed to the changes in the lifestyle factors, including physical inactivity and unhealthy diet, both of which are modifiable. Existing evidence suggests that increasing physical activity reduces the risk of T2D. Improving the built environment can make it more conducive to people to increase physical activity. There is also a rapid nutrition transition with consumption of diets with higher intake of refined grains, higher fat, increased consumption of sugar and sweetened beverages, and lower intake of fruits and vegetables. A multisectoral approach promoting healthier diets and increasing physical activity can help in slowing down the diabetic epidemic. However, this requires political will to make necessary policy changes, as well as empowerment of the community, if the preventive measures are to be sustainable and scalable.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. International Diabetes Federation IDF Diabetes Atlas, 7 edn. International Diabetes Federation: Brussels, Belgium, 2015.

  2. King H, Rewers M . Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care 1993; 16: 157–177.

    Article  CAS  PubMed  Google Scholar 

  3. McKeigue PM, Shah B, Marmot MG . Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337: 382–386.

    Article  CAS  PubMed  Google Scholar 

  4. Mohan V, Sharp PS, Cloke HR, Burrin JM, Schumer B, Kohner EM . Serum immunoreactive insulin responses to a glucose load in Asian Indian and European type 2 (non-insulin-dependent) diabetic patients and control subjects. Diabetologia 1986; 29: 235–237.

    Article  CAS  PubMed  Google Scholar 

  5. Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: Phase I results of the Indian Council of Medical Research—INdia DIABetes (ICMR–INDIAB) study. Diabetologia 2011; 54: 3022–3027.

    Article  CAS  PubMed  Google Scholar 

  6. Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 2011; 43: 984–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tabassum R, Chauhan G, Dwivedi OP, Mahajan A, Jaiswal A, Kaur I et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 2013; 62: 977–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chidambaram M, Radha V, Mohan V . Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 2010; 59: 1760–1766.

    Article  CAS  PubMed  Google Scholar 

  9. Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 2010; 59: 2068–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gujral UP, Venkat Narayan KM, Guha Pradeepa R, Deepa M, Ali MK, Anjana RM et al. Comparing type 2 diabetes, prediabetes, and their associated risk factors in Asian Indians in India and in the US: the CARRS and MASALA studies. Diabetes Care 2015; 38: 1312–1318.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chapter 2: Historical background, terminology, evolution of recommendations, and measurement. Available at: http://www.cdc.gov/nccdphp/sgr/intro2.htm.

  12. Snook GA . The history of sports medicine. Part 1. Am J Sports Med 1984; 12: 252–254.

    Article  CAS  PubMed  Google Scholar 

  13. Guthold R, Ono T, Strong KL, Chatterji S, Morabia A . Worldwide variability in physical inactivity a 51-country survey. Am J Prev Med 2008; 34: 486–494.

    Article  PubMed  Google Scholar 

  14. Mohan V, Mathur P, Deepa R, Deepa M, Shukla DK, Menon GR et al. Urban rural differences in prevalence of self-reported diabetes in India-the WHO-ICMR Indian NCD risk factor surveillance. Diabetes Res Clin Pract 2008; 80: 159–168.

    Article  PubMed  Google Scholar 

  15. Krishnan A, Shah B, Lal V, Shukla DK, Paul E, Kapoor SK . Prevalence of risk factors for non-communicable disease in a rural area of Faridabad district of Haryana. Indian J Public Health 2008; 52: 117–124.

    CAS  PubMed  Google Scholar 

  16. Haldiya KR, Mathur ML, Sachdev R . Lifestyle-related risk factors for cardiovascular disease in a desert population of India. Curr Sci 2010; 99: 190–195.

    Google Scholar 

  17. Sullivan R, Kinra S, Ekelund U, Bharathi AV, Vaz M, Kurpad A et al. Socio-demographic patterning of physical activity across migrant groups in India: results from the Indian Migration Study. PLoS One 2011; 6: e24898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anjana RM, Pradeepa R, Das AK, Deepa M, Bhansali A, Joshi SR et al. ICMR– INDIAB Collaborative Study Group. physical activity and inactivity patterns in India - results from the ICMR-INDIAB study (Phase-1) [ICMR-INDIAB-5]. Int J Behav Nutr Phys Act 2014; 11: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT . Lancet Physical Activity Series Working Group. effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; 380: 219–229.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu FB . Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 2011; 34: 1249–1257.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE . Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 2003; 289: 1785–1791.

    Article  PubMed  Google Scholar 

  22. Roof K, Oleru N . Public health: Seattle and King County’s push for the built environment. J Environ Health 2008; 71: 24–27.

    PubMed  Google Scholar 

  23. Sundquist K, Eriksson U, Mezuk B, Ohlsson H . Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place 2015; 31: 24–30.

    Article  PubMed  Google Scholar 

  24. Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Gozdyra P et al. Association of neighborhood walkability with change in overweight, obesity, and diabetes. JAMA 2016; 315: 2211–2220.

    Article  CAS  PubMed  Google Scholar 

  25. Pasala SK, Rao AA, Sridhar GR . Built environment and diabetes. Int J Diabetes Dev Ctries 2010; 30: 63–68.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Auchincloss AH, Diez Roux AV, Mujahid MS, Shen M, Bertoni AG, Carnethon MR . Neighborhood resources for physical activity and healthy foods and incidence of type 2 diabetes mellitus: the Multi-Ethnic study of Atherosclerosis. Arch Intern Med 2009; 169: 1698–1704.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Booth GL, Creatore MI, Moineddin R, Gozdyra P, Weyman JT, Matheson FI et al. Unwalkable neighborhoods, poverty, and the risk of diabetes among recent immigrants to Canada compared with long-term residents. Diabetes Care 2013; 36: 302–308.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 2016; 388: 1311–1324.

    Article  PubMed  Google Scholar 

  29. Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H et al. City planning and population health: a global challenge. Lancet 2016; 388: 2912–2924.

    Article  PubMed  Google Scholar 

  30. Stevenson M, Thompson J, de Sá TH, Ewing R, Mohan D, McClure R et al. Land use, transport, and population health: estimating the health benefits of compact cities. Lancet 2016; 388: 2925–2935.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sallis JF, Bull F, Burdett R, Frank LD, Griffiths P, Giles-Corti B et al. Use of science to guide city planning policy and practice: how to achieve healthy and sustainable future cities. Lancet 2016; 388: 2936–2947.

    Article  PubMed  Google Scholar 

  32. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016; 388: 1302–1310.

    Article  PubMed  Google Scholar 

  33. Misra A, Nigam P, Hills AP, Chadha DS, Sharma V, Deepak KK et al. Consensus physical activity guidelines for Asian Indians. Diabetes Technol Ther 2012; 14: 83–98.

    Article  PubMed  Google Scholar 

  34. Mohan V, Shanthirani CS, Deepa M, Datta M, Williams OD, Deepa R . Community empowerment – a successful model for prevention of noncommunicable diseases in India–The Chennai Urban Population Study (CUPS-17). J Assoc Physicians India 2006; 54: 858–862.

    CAS  PubMed  Google Scholar 

  35. Deepa M, Anjana RM, Manjula D, Narayan KV, Mohan V . Convergence of prevalence rates of diabetes and cardiometabolic risk factors in middle and low income groups in urban India: 10-year follow-up of the Chennai Urban Population Study. J Diabetes Sci Technol 2011; 5: 918–927.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sallis JF, Floyd MF, Rodríguez DA, Saelens BE . Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012; 125: 729–737.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reis RS, Salvo D, Ogilvie D, Lambert EV, Goenka S, Brownson RC . Lancet Physical Activity Series 2 Executive Committee. Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet 2016; 388: 1337–1348.

    Article  PubMed  PubMed Central  Google Scholar 

  38. World Health Organization. Chronic diseases and health promotion Available at: http://www.who.int/chp/chronic_disease_report/part4_ch1/en/index12.html.

  39. Popkin BM . The nutrition transition in low-income countries: an emerging crisis. Nutr Rev 1994; 52: 285–298.

    Article  CAS  PubMed  Google Scholar 

  40. Caballero B, Popkin BM . The Nutrition Transition: Diet and Disease in the Developing World. Academic Press: London, UK, 2002; pp 1–8.

    Book  Google Scholar 

  41. Ross AC . Modern Nutrition in Health and Disease. 11th ed. Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR eds, Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014, pp 64 pp1513.

    Google Scholar 

  42. Aune D, Norat T, Romundstad P, Vatten LJ . Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of cohort studies. Eur J Epidemiol 2013; 28: 845–858.

    Article  CAS  PubMed  Google Scholar 

  43. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S . Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr 2012; 142: 1304–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohan V, Ramachandran A, Viswanathan M, Snehalatha C . High carbohydrate high fibre diet in diabetes. J Diabet Assoc India 1981; 21: 90–96.

    Google Scholar 

  45. Schmidhuber J, Shetty P . The nutrition transition to 2030. Why developing countries are likely to bear the major burden. Acta Agric Scand B Econ 2005; 2: 150–166.

    Google Scholar 

  46. Hu FB . Plant-based foods and prevention of cardiovascular disease: an overview. Am J ClinNutr 2003; 78: 544S–551S.

    CAS  Google Scholar 

  47. Radhika G, Van Dam RM, Sudha V, Ganesan A, Mohan V . Refined grain consumption and the metabolic syndrome in urban Asian Indians (Chennai Urban Rural Epidemiology Study 57). Metabolism 2009; 58: 675–681.

    Article  CAS  PubMed  Google Scholar 

  48. Mohan V, Radhika G, Sathya RM, Tamil SR, Ganesan A, Sudha V . Dietary carbohydrates, glycaemic load, food groups and newly detected type 2 diabetes among urban Asian Indian population in Chennai, India (Chennai Urban Rural Epidemiology Study 59). Br J Nutr 2009; 102: 1498–1506.

    Article  CAS  PubMed  Google Scholar 

  49. Mohan V, Radhika G, Vijayalakshmi P, Sudha V . Can the diabetes/cardiovascular disease epidemic in India be explained, at least in part, by excess refined grain (rice) intake? Indian J Med Res 2010; 131: 369–372.

    CAS  PubMed  Google Scholar 

  50. Seal CJ, Brownlee IA . Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc 2015; 74: 313–319.

    Article  PubMed  Google Scholar 

  51. Radhika G, Sathya RM, Ganesan A, Saroja R, Vijayalakshmi P, Sudha V et al. Dietary profile of urban adult population in South India in the context of chronic disease epidemiology (CURES-68). Public Health Nutr 2011; 14: 591–598.

    Article  PubMed  Google Scholar 

  52. Ley SH, Hamdy O, Mohan V, Hu FB . Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014; 383: 1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett WC et al. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med 2010; 170: 961–969.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mohan V, Anjana RM, Gayathri R, Ramya Bai M, Lakshmipriya N, Ruchi V et al. Glycemic index of a novel high-fiber white rice variety developed in India-a randomized control trial study. Diabetes Technol Ther 2016; 18: 164–170.

    Article  CAS  PubMed  Google Scholar 

  55. Lustig RH, Schmidt LA, Brindis CD . Public health: the toxic truth about sugar. Nature 2012; 482: 27–29.

    Article  CAS  PubMed  Google Scholar 

  56. USDA (United States Department of Agriculture). Foreign Agricultural Service report 2014. Available at: http://www.fas.usda.gov/regions/india.

  57. Gulati S, Misra A . Sugar intake, obesity, and diabetes in India. Nutrients 2014; 6: 5955–5974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB . Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 2010; 33: 2477–2483.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB . Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004; 80: 348–356.

    Article  CAS  PubMed  Google Scholar 

  60. Basu S, Vellakkal S, Agrawal S, Stuckler D, Popkin B, Ebrahim S . Averting obesity and type 2 diabetes in India through sugar-sweetened beverage taxation: an economic-epidemiologic modeling study. PLoS Med 2014; 11: e1001582.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Euromonitor International 2013 Passport Global Market Information Database. Euromonitor: New York, NY, USA.

  62. Stookey JD, Constant F, Gardner CD, Popkin BM . Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity (Silver Spring) 2007; 15: 3013–3022.

    Article  CAS  Google Scholar 

  63. Bazzano LA, Li TY, Joshipura KJ, Hu FB . Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 2008; 31: 1311–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Basu S, Vellakkal S, Agrawal S, Stuckler D, Popkin B, Ebrahim S . Averting obesity and type 2 diabetes in India through sugar-sweetened beverage taxation: an economic-epidemiologic modeling study. PLoS Med 2014; 11: e1001582.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Basu S, McKee M, Galea G, Stuckler D . Relationship of soft drink consumption to global overweight, obesity, and diabetes: a cross-national analysis of 75 countries. Am J Public Health 2013; 103: 2071–2077.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Drewnowski A, Popkin BM . The nutrition transition: new trends in the global diet. Nutr rev 1997; 55: 31–43.

    Article  CAS  PubMed  Google Scholar 

  67. Misra A, Singhal N, Sivakumar B, Bhagat N, Jaiswal A, Khurana L . Nutrition transition in India: Secular trends in dietary intake and their relationship to diet-related non-communicable diseases. J Diabetes 2011; 3: 278–292.

    Article  PubMed  Google Scholar 

  68. Gulati S, Misra A, Sharma M . Dietary Fats and Oils in India. Curr Diabetes Rev 2016, e-pub ahead of print 11 August 2016.

  69. Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005; 135: 562–566.

    Article  CAS  PubMed  Google Scholar 

  70. Mozaffarian D, Pischon T, Hankinson SE, Rifai N, Joshipura K, Willett WC et al. Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 2004; 79: 606–612.

    Article  CAS  PubMed  Google Scholar 

  71. Misra A, Khurana L, Isharwal S, Bhardwaj S . South Asian diets and insulin resistance. Br J Nutr 2009; 101: 465–473.

    Article  CAS  PubMed  Google Scholar 

  72. Popkin BM . The nutrition transition and obesity in the developing world. J Nutr 2001; 131: 871 S–873 S.

    Article  Google Scholar 

  73. FSSAI 2010 Regulation of trans fatty acids (TFA) in partially hydrogenated vegetable oil (PHVO’s). Source. Available at: http://www.old.fssai.gov.in/Portals/0/Regulation_of_TFA_.pdf Assessed on 10 October 2016.

  74. Lakshmipriya N, Gayathri R, Praseena K, Vijayalakshmi P, Geetha G, Sudha V et al. Type of vegetable oils used in cooking and risk of metabolic syndrome among Asian Indians. Int J Food Sci Nutr 2013; 64: 131–139.

    Article  CAS  PubMed  Google Scholar 

  75. Raheja BS, Talim M . Dietary fats and their lipid toxicity: role in pathogenesis of CHD, diabetes and cancer. J Diab Assoc India 1998; 38: 1–11.

    Google Scholar 

  76. Bazzano LA, Serdula MK, Liu S . Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep 2003; 5: 492–499.

    Article  PubMed  Google Scholar 

  77. Ford ES, Mokdad AH . Fruit and vegetable consumption and diabetes mellitus incidence among US adults. Prev Med 2001; 32: 33–39.

    Article  CAS  PubMed  Google Scholar 

  78. Feskens EJ, Virtanen SM, Rasanen L, Tuomilehto J, Stengard J, Pekkanen J et al. Dietary factors determining diabetes and impaired glucose tolerance: a 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995; 18: 1104–1112.

    Article  CAS  PubMed  Google Scholar 

  79. World Health Organization (WHO). Diet, nutrition, and the prevention of chronic diseases. Joint WHO/FAO Expert consultation. WHO Technical Report Series no.916. WHO: Geneva, Switzerland, 2003, pp 1–149.

  80. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani HA et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224–2260.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Radhika G, Sudha V, Sathya R, Ganesan A, Mohan V . Association of fruit and vegetable intake with cardiovascular risk factors in urban south Indians. Br J Nutr 2008; 99: 398–405.

    Article  CAS  PubMed  Google Scholar 

  82. McGuire S . Scientific Report of the 2015 Dietary Guidelines Advisory Committee. US Departments of Agriculture and Health and Human Services: Washington, DC, USA, 2015 Adv Nutr 2016; 7: 202–204.

    Google Scholar 

  83. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403.

    Article  CAS  PubMed  Google Scholar 

  84. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  85. Mensink M, Feskens EJM, Saris WHM, de Bruin TWA, Blaak EE . Study on Lifestyle Intervention and Impaired Glucose Tolerance Maastricht (SLIM): preliminary results after one year. Int J Obes Relat Metab Disord 2003; 27: 377–384.

    Article  CAS  PubMed  Google Scholar 

  86. Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 2008; 371: 1783–1789.

    Article  PubMed  Google Scholar 

  87. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V . Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49: 289–297.

    Article  CAS  PubMed  Google Scholar 

  88. Ramachandran A, Snehalatha C, Ram J, Selvam S, Simon M, Nanditha A et al. Effectiveness of mobile phone messaging in prevention of type 2 diabetes by lifestyle modification in men in India: a prospective, parallel-group, randomized controlled trial. Lancet Diabetes Endocrinol 2013; 1: 191–198.

    Article  PubMed  Google Scholar 

  89. Weber MB, Ranjani H, Meyers GC, Mohan V, Narayan KM . A model of translational research for diabetes prevention in low and middleincome countries: the Diabetes Community Lifestyle Improvement Program (D-CLIP) trial. Prim Care Diabetes 2012; 6: 3–9.

    Article  PubMed  Google Scholar 

  90. Weber MB, Ranjani H, Staimez LR, Anjana RM, Ali MK, Narayan KM et al. The stepwise approach to diabetes prevention: results from the D-CLIP randomized controlled trial. Diabetes Care 2016; 39: 1760–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anjana RM, Sudha V, Nair DH, Lakshmipriya N, Deepa M, Pradeepa R et al. Diabetes in Asian Indians–how much is preventable? ten-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES-142). Diabetes Res Clin Pract 2015; 109: 253–261.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Mohan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, M., Anjana, R. & Mohan, V. Role of lifestyle factors in the epidemic of diabetes: lessons learnt from India. Eur J Clin Nutr 71, 825–831 (2017). https://doi.org/10.1038/ejcn.2017.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2017.19

This article is cited by

Search

Quick links