Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective cohort studies

Abstract

To investigate the associations of dietary intakes of anthocyanins and berry fruits with type 2 diabetes mellitus (T2DM) risk and to evaluate the potential dose–response relationships based on prospective cohort studies. Cochrane library, Embase and PubMed databases were systematically searched up to Jan 2016 for relevant original studies. Summary relative risks (RRs) were calculated with a random effects model comparing the highest with lowest category. Dose–response was estimated using restricted cubic spline regression models. Three cohort studies reporting dietary anthocyanin intake with 200 894 participants and 12 611 T2DM incident cases, and five cohort studies reporting berry intake with 194 019 participants and 13 013 T2DM incident cases were investigated. Dietary anthocyanin consumption was associated with a 15% reduction of T2DM risk (summary RR=0.85; 95% confidence interval (CI): 0.80–0.91; I2=14.5%). Consumption of berries was associated with an 18% reduction of T2DM risk (summary RR=0.82, 95% CI: 0.76–0.89; I2=48.6%). Significant curvilinear associations were found between dietary intake of anthocyanins (P for nonlinearity=0.006) and berries (P for nonlinearity=0.028) and T2DM risk, respectively. The risk of T2DM was decreased by 5%, with a 7.5 mg/day increment of dietary anthocyanin intake (RR=0.95; 95% CI: 0.93-0.98; I2=0.00%) or with a 17 g/day increment of berry intake (RR=0.95, 95% CI: 0.91–0.99; I2=0.00%), respectively. Higher dietary intakes of anthocyanins and berry fruits are associated with a lower T2DM risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Daar AS, Singer PA, Persad DL, Pramming SK, Matthews DR, Beaglehole R et al. Grand challenges in chronic non-communicable diseases. Nature 2007; 450: 494–496.

    Article  CAS  Google Scholar 

  2. Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J . Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103: 137–149.

    Article  CAS  Google Scholar 

  3. Ajala O, English P, Pinkney J . Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 2013; 97: 505–516.

    Article  CAS  Google Scholar 

  4. Montonen J, Knekt P, Järvinen R, Aromaa A, Reunanen A . Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 2003; 77: 622–629.

    Article  CAS  Google Scholar 

  5. Cooper AJ, Forouhi NG, Ye Z, Buijsse B, Arriola L, Balkau B et al. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 2012; 66: 1082–1092.

    Article  CAS  Google Scholar 

  6. Ley SH, Hamdy O, Mohan V, Hu FB . Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014; 383: 1999–2007.

    Article  CAS  Google Scholar 

  7. Castaneda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA . Chemical studies of anthocyanins: a review. Food Chem 2009; 113: 859–871.

    Article  CAS  Google Scholar 

  8. Guo H, Ling W . The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev Endocr Metab Dis 2015; 16: 1–13.

    Article  Google Scholar 

  9. Kwon S-H, Ahn I-S, Kim S-O, Kong C-S, Chung H-Y, Do M-S et al. Anti-obesity and hypolipidemic effects of black soybean anthocyanins. J Med Food 2007; 10: 552–556.

    Article  CAS  Google Scholar 

  10. Wang L-S, Stoner GD . Anthocyanins and their role in cancer prevention. Cancer Lett 2008; 269: 281–290.

    Article  CAS  Google Scholar 

  11. Wallace TC . Anthocyanins in cardiovascular disease. Adv Nutr 2011; 2: 1–7.

    Article  CAS  Google Scholar 

  12. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL . Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 2006; 54: 4069–4075.

    Article  CAS  Google Scholar 

  13. Seeram NP . Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 2008; 56: 627–629.

    Article  CAS  Google Scholar 

  14. Mursu J, Virtanen JK, Tuomainen T-P, Nurmi T, Voutilainen S . Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2014; 99: 328–333.

    Article  CAS  Google Scholar 

  15. Muraki I, Imamura F, Manson JE, Hu FB, Willett WC, van Dam RM et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. Brit Med J 2013; 347: f5001.

    Article  Google Scholar 

  16. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 2012; 95: 925–933.

    Article  CAS  Google Scholar 

  17. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT . Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 2013; 143: 1474–1480.

    Article  CAS  Google Scholar 

  18. Dauchet L, Amouyel P, Hercberg S, Dallongeville J . Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 2006; 136: 2588–2593.

    Article  CAS  Google Scholar 

  19. Stang A . Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603–605.

    Article  Google Scholar 

  20. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  Google Scholar 

  21. Higgins JPT, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. Brit Med J 2003; 327: 557–560.

    Article  Google Scholar 

  22. Jackson D, White IR, Thompson SG . Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. Stat Med 2010; 29: 1282–1297.

    Article  Google Scholar 

  23. Higgins JPT, Green S . Cochrane Handbook for Systematic Reviews of Interventions 4.2.5: The Cochrane Library. Chichester: John Wiley, 2005.

    Google Scholar 

  24. Liu Q, Cook NR, Bergström A, Hsieh C-C . A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose-response data. Comput Stat Data Anal 2009; 53: 4157–4167.

    Article  Google Scholar 

  25. Yang B, Wang F-L, Ren X-L, Li D . Biospecimen long-chain n-3 PUFA and risk of colorectal cancer: a meta-analysis of data from 60,627 individuals. PLoS ONE 2014; 9: e110574.

    Article  Google Scholar 

  26. Orsini N, Bellocco R, Greenland S . Generalized least squares for trend estimation of summarized dose-response data. Stata J 2006; 6: 40–57.

    Article  Google Scholar 

  27. Harre FE, Lee KL, Pollock BG . Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer 1988; 80: 1198–1202.

    Article  Google Scholar 

  28. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D . Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 2012; 175: 66–73.

    Article  Google Scholar 

  29. Greenland S, Longnecker MP . Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992; 135: 1301–1309.

    Article  CAS  Google Scholar 

  30. Montonen J, Järvinen R, Heliövaara M, Reunanen A, Aromaa A, Knekt P . Food consumption and the incidence of type II diabetes mellitus. Eur J Clin Nutr 2005; 59: 441–448.

    Article  CAS  Google Scholar 

  31. Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT . Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr 2010; 140: 1764–1768.

    Article  CAS  Google Scholar 

  32. Liu Y, Li D, Zhang Y, Sun R, Xia M . Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. Am J Physiol Endocrinol Metab 2014; 306: E975–E988.

    Article  CAS  Google Scholar 

  33. Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis 2013; 23: 843–849.

    Article  CAS  Google Scholar 

  34. Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A . Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 2014; 144: 202–208.

    Article  CAS  Google Scholar 

  35. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F . Antioxidative activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 2005; 69: 979–988.

    Article  CAS  Google Scholar 

  36. Wang H, Cao G, Prior RL . Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 1997; 45: 304–309.

    Article  CAS  Google Scholar 

  37. Li H, Deng Z, Zhu H, Hu C, Liu R, Young JC et al. Highly pigmented vegetables: anthocyanin compositions and their role in antioxidant activities. Food Res Int 2012; 46: 250–259.

    Article  CAS  Google Scholar 

  38. Chiang A-N, Wu H-L, Yeh H-I, Chu C-S, Lin H-C, Lee W-C . Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids 2006; 41: 797–803.

    Article  CAS  Google Scholar 

  39. Roy M, Sen S, Chakraborti AS . Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: implication for glycation-induced hemoglobin modification. Life Sci 2008; 82: 1102–1110.

    Article  CAS  Google Scholar 

  40. Zhang C, Guo X, Cai W, Ma Y, Zhao X . Binding characteristics and protective capacity of cyanidin-3-glucoside and its aglycon to calf thymus DNA. J Food Sci 2015; 80: H889–H893.

    Article  CAS  Google Scholar 

  41. Baker RG, Hayden MS, Ghosh S . NF-κB, inflammation, and metabolic disease. Cell Metab 2011; 13: 11–22.

    Article  CAS  Google Scholar 

  42. Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen H . Antioxidant phytochemicals against type 2 diabetes. Brit J Nutr 2008; 99: ES109–ES117.

    Article  Google Scholar 

  43. Hou D-X, Yanagita T, Uto T, Masuzaki S, Fujii M . Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure–activity relationship and molecular mechanisms involved. Biochem Pharmacol 2005; 70: 417–425.

    Article  CAS  Google Scholar 

  44. Hassimotto NMA, Moreira V, Nascimento N.G.D, Souto P.C.M.D.C, Teixeira C, Lajolo FM . Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside. Biomed Res Int 2013; 2013: 146716.

    Article  Google Scholar 

  45. Nizamutdinova IT, Jin YC, Chung JI, Shin SC, Lee SJ, Seo HG et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol Nutr Food Res 2009; 53: 1419–1429.

    Article  CAS  Google Scholar 

  46. Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 2007; 74: 1619–1627.

    Article  CAS  Google Scholar 

  47. Calder PC . Mechanisms of action of (n-3) fatty acids. J Nutr 2012; 142: 592S–599S.

    Article  CAS  Google Scholar 

  48. Jia Y, Kim J-Y, Jun H-j, Kim S-J, Lee J-H, Hoang MH et al. Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing hepatic lipid. Biochim Biophys Acta 2013; 1831: 698–708.

    Article  CAS  Google Scholar 

  49. Winder W, Hardie D . AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 1999; 277: E1–E10.

    Article  CAS  Google Scholar 

  50. Wei X, Wang D, Yang Y, Xia M, Li D, Li G et al. Cyanidin-3-O-β-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity. J Sci Food Agric 2011; 91: 1006–1013.

    Article  CAS  Google Scholar 

  51. Kurimoto Y, Shibayama Y, Inoue S, Soga M, Takikawa M, Ito C et al. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. J Agric Food Chem 2013; 61: 5558–5564.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Chao Zhang (Beijing Academy of Agriculture and Forestry Sciences) and Dr Jusheng Zheng (MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom) for the help of data analysis and discussion. This study was funded by the National Basic Research Program of China (973 Program: 2015CB553604); by National Natural Science Foundation of China (NSFC: 81273054); and by the PhD Programs Foundation of Ministry of Education of China (20120101110107). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yang, B., Tan, J. et al. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective cohort studies. Eur J Clin Nutr 70, 1360–1367 (2016). https://doi.org/10.1038/ejcn.2016.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.142

This article is cited by

Search

Quick links