Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Key determinants of energy expenditure in cancer and implications for clinical practice

Abstract

Great discrepancies exist in the reported prevalence of altered energy metabolism (hypo- or hypermetabolism) in cancer patients, which is likely due to the vast array of phenomena that can affect energy expenditure in these patients. The purpose of this review was to critically evaluate key determinants of energy expenditure in cancer and the relevance for clinical practice. Resting energy expenditure (REE) is the largest and most commonly measured component of total energy expenditure. In addition to the energetic demand of the tumor itself, REE may be increased due to changes in inflammation, body composition and brown adipose tissue activation. Energy expenditure from physical activity is often lower in cancer compared with healthy populations, and there is evidence to suggest that the thermic effect of food might also be blunted and affected by cancer therapy. Although accurate assessment of energy metabolism is a cornerstone of adequate nutritional therapy, prediction methods often do not capture the true energy expenditure of most cancer patients. In fact, limits of agreement of prediction equations may range from 40% below to 30% above measured REE. Such variability highlights the need for a more comprehensive understanding of energy expenditure in cancer and the value of accurately assessing the energy needs of these patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR . Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 2005; 82: 941–948.

    Article  CAS  PubMed  Google Scholar 

  2. Rising R, Harper IT, Fontvielle AM, Ferraro RT, Spraul M, Ravussin E . Determinants of total daily energy expenditure: variability in physical activity. Am J Clin Nutr 1994; 59: 800–804.

    Article  CAS  PubMed  Google Scholar 

  3. Goran MI . Genetic influences on human energy expenditure and substrate utilization. Behav Genet 1997; 27: 389–399.

    Article  CAS  PubMed  Google Scholar 

  4. Knox LS, Crosby LO, Feurer ID, Buzby GP, Miller CL, Mullen JL . Energy expenditure in malnourished cancer patients. Ann Surg 1983; 197: 152–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dempsey DT, Feurer ID, Knox LS, Crosby LO, Buzby GP, Mullen JL . Energy expenditure in malnourished gastrointestinal cancer patients. Cancer 1984; 53: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  6. Bosaeus I, Daneryd P, Svanberg E, Lundholm K . Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer 2001; 93: 380–383.

    Article  CAS  PubMed  Google Scholar 

  7. Prado CM, Heymsfield SB . Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr 2014; 38: 940–953.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prado CM, Cushen SJ, Orsso CE, Ryan AM . Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc 2016; 75: 1–11.

    Article  Google Scholar 

  9. Ryan AM, Power DG, Daly L, Cushen SJ, Ni Bhuachalla E, Prado CM . Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. Proc Nutr Soc 2016; 75: 1–13.

    Article  Google Scholar 

  10. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fearon KC, Glass DJ, Guttridge DC . Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012; 16: 153–166.

    Article  CAS  PubMed  Google Scholar 

  12. Straub RH, Cutolo M, Buttgereit F, Pongratz G . Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 2010; 267: 543–560.

    Article  CAS  PubMed  Google Scholar 

  13. Lundholm K, Edstrom S, Karlberg I, Ekman L, Schersten T . Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients. Cancer 1982; 50: 1142–1150.

    Article  CAS  PubMed  Google Scholar 

  14. Friesen DE, Baracos VE, Tuszynski JA . Modeling the energetic cost of cancer as a result of altered energy metabolism: implications for cachexia. Theor Biol Med Model 2015; 12: 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hall KD, Baracos VE . Computational modeling of cancer cachexia. Curr Opin Clin Nutr Metab Care 2008; 11: 214–221.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heymsfield SB . Measurements of energy balance. Acta Diabetol 2003; 40 (Suppl 1), S117–S121.

    Article  PubMed  Google Scholar 

  17. Lieffers JR, Mourtzakis M, Hall KD, McCargar LJ, Prado CM, Baracos VE . A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. Am J Clin Nutr 2009; 89: 1173–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fredrix EW, Soeters PB, Rouflart MJ, von Meyenfeldt MF, Saris WH . Resting energy expenditure in patients with newly detected gastric and colorectal cancers. Am J Clin Nutr 1991; 53: 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  19. Cao DX, Wu GH, Zhang B, Quan YJ, Wei J, Jin H et al. Resting energy expenditure and body composition in patients with newly detected cancer. Clin Nutr 2010; 29: 72–77.

    Article  PubMed  Google Scholar 

  20. Chen WJ, Chung YC . Energy expenditure in patients with hepatocellular carcinoma. Cancer 1994; 73: 590–595.

    Article  CAS  PubMed  Google Scholar 

  21. Staal-van den Brekel AJ, Schols AM, ten Velde GP, Buurman WA, Wouters EF . Analysis of the energy balance in lung cancer patients. Cancer Res 1994; 54: 6430–6433.

    CAS  PubMed  Google Scholar 

  22. Jebb SA, Osborne RJ, Dixon AK, Bleehen NM, Elia M . Measurements of resting energy expenditure and body composition before and after treatment of small cell lung cancer. Ann Oncol 1994; 5: 915–919.

    Article  CAS  PubMed  Google Scholar 

  23. Jatoi A, Daly BD, Hughes VA, Dallal GE, Kehayias J, Roubenoff R . Do patients with nonmetastatic non-small cell lung cancer demonstrate altered resting energy expenditure? Ann Thorac Surg 2001; 72: 348–351.

    Article  CAS  PubMed  Google Scholar 

  24. Fredrix EW, Staal-van den Brekel AJ, Wouters EF . Energy balance in nonsmall cell lung carcinoma patients before and after surgical resection of their tumors. Cancer 1997; 79: 717–723.

    Article  CAS  PubMed  Google Scholar 

  25. Scott HR, McMillan DC, Watson WS, Milroy R, McArdle CS . Longitudinal study of resting energy expenditure, body cell mass and the inflammatory response in male patients with non-small cell lung cancer. Lung Cancer 2001; 32: 307–312.

    Article  CAS  PubMed  Google Scholar 

  26. Dempsey DT, Knox LS, Mullen JL, Miller C, Feurer ID, Buzby GP . Energy expenditure in malnourished patients with colorectal cancer. Arch Surg 1986; 121: 789–795.

    Article  CAS  PubMed  Google Scholar 

  27. Ravasco P, Monteiro-Grillo I, Camilo M . Colorectal cancer: intrinsic characteristics modulate cancer energy expenditure and the risk of cachexia. Cancer Invest 2007; 25: 308–314.

    Article  CAS  PubMed  Google Scholar 

  28. Baracos VE Metabolism and physiology. In: Del Fabbro E, Bruera E, Demark-Wahnefried W, Bowling T, Hopkinson JB eds, Nutrition and the Cancer Patient. Oxford University Press, 2010, pp 7–18.

    Book  Google Scholar 

  29. Grossberg AJ, Scarlett JM, Marks DL . Hypothalamic mechanisms in cachexia. Physiol Behav 2010; 100: 478–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fearon K, Arends J, Baracos V . Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 2013; 10: 90–99.

    Article  CAS  PubMed  Google Scholar 

  31. Wu J, Huang C, Xiao H, Tang Q, Cai W . Weight loss and resting energy expenditure in male patients with newly diagnosed esophageal cancer. Nutrition 2013; 29: 1310–1314.

    Article  PubMed  Google Scholar 

  32. Simons JP, Schols AM, Buurman WA, Wouters EF . Weight loss and low body cell mass in males with lung cancer: relationship with systemic inflammation, acute-phase response, resting energy expenditure, and catabolic and anabolic hormones. Clin Sci (Lond) 1999; 97: 215–223.

    Article  CAS  Google Scholar 

  33. Staal-van den Brekel AJ, Dentener MA, Schols AM, Buurman WA, Wouters EF . Increased resting energy expenditure and weight loss are related to a systemic inflammatory response in lung cancer patients. J Clin Oncol 1995; 13: 2600–2605.

    Article  CAS  PubMed  Google Scholar 

  34. Deans DA, Tan BH, Wigmore SJ, Ross JA, de Beaux AC, Paterson-Brown S et al. The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer. Br J Cancer 2009; 100: 63–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravasco P, Monteiro-Grillo I, Camilo M . How relevant are cytokines in colorectal cancer wasting? Cancer J 2007; 13: 392–398.

    Article  CAS  PubMed  Google Scholar 

  36. Johnson G, Salle A, Lorimier G, Laccourreye L, Enon B, Blin V et al. Cancer cachexia: measured and predicted resting energy expenditures for nutritional needs evaluation. Nutrition 2008; 24: 443–450.

    Article  PubMed  Google Scholar 

  37. Lundholm K, Daneryd P, Korner U, Hyltander A, Bosaeus I . Evidence that long-term COX-treatment improves energy homeostasis and body composition in cancer patients with progressive cachexia. Int J Oncol 2004; 24: 505–512.

    CAS  PubMed  Google Scholar 

  38. Trutschnigg B, Kilgour RD, Morais JA, Lucar E, Hornby L, Molla H et al. Metabolic, nutritional and inflammatory characteristics in elderly women with advanced cancer. J Geriatr Oncol 2013; 4: 183–189.

    Article  PubMed  Google Scholar 

  39. Becker Veronese CB, Guerra LT, Souza Grigolleti S, Vargas J, Pereira da Rosa AR, Pinto Kruel CD . Basal energy expenditure measured by indirect calorimetry in patients with squamous cell carcinoma of the esophagus. Nutr Hosp 2013; 28: 142–147.

    PubMed  Google Scholar 

  40. Richards EW, Long CL, Nelson KM, Tohver OK, Pinkston JA, Navari RM et al. Protein turnover in advanced lung cancer patients. Metabolism 1993; 42: 291–296.

    Article  CAS  PubMed  Google Scholar 

  41. Vaisman N, Lusthaus M, Niv E, Santo E, Shacham-Shmueli E, Geva R et al. Effect of tumor load on energy expenditure in patients with pancreatic cancer. Pancreas 2012; 41: 230–232.

    Article  PubMed  Google Scholar 

  42. Langius JA, Kruizenga HM, Uitdehaag BM, Langendijk JA, Doornaert P, Leemans CR et al. Resting energy expenditure in head and neck cancer patients before and during radiotherapy. Clin Nutr 2012; 31: 549–554.

    Article  PubMed  Google Scholar 

  43. Wallengren O, Bosaeus I, Lundholm K . Dietary energy density, inflammation and energy balance in palliative care cancer patients. Clin Nutr 2013; 32: 88–92.

    Article  PubMed  Google Scholar 

  44. Prado CMM, Mourtzakis M, Baracos V, Reiman T, Sawyer MB, McCargar LJ . Overweight and obese patients with solid tumors may have sarcopenia, poor prognosis and early features of cachexia. Int J Body Compos Res 2010; 8: 7–15.

    Google Scholar 

  45. Wang Z, Heshka S, Gallagher D, Boozer CN, Kotler DP, Heymsfield SB . Resting energy expenditure-fat-free mass relationship: new insights provided by body composition modeling. Am J Physiol Endocrinol Metab 2000; 279: E539–E545.

    Article  CAS  PubMed  Google Scholar 

  46. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489–495.

    Article  PubMed  Google Scholar 

  47. Xu WP, Cao DX, Lin ZM, Wu GH, Chen L, Zhang JP et al. Analysis of energy utilization and body composition in kidney, bladder, and adrenal cancer patients. Urol Oncol 2012; 30: 711–718.

    Article  PubMed  Google Scholar 

  48. Garcia-Peris P, Lozano MA, Velasco C, de La Cuerda C, Iriondo T, Breton I et al. Prospective study of resting energy expenditure changes in head and neck cancer patients treated with chemoradiotherapy measured by indirect calorimetry. Nutrition 2005; 21: 1107–1112.

    Article  PubMed  Google Scholar 

  49. Kutynec CL, McCargar L, Barr SI, Hislop TG . Energy balance in women with breast cancer during adjuvant treatment. J Am Diet Assoc 1999; 99: 1222–1227.

    Article  CAS  PubMed  Google Scholar 

  50. Harvie MN, Campbell IT, Baildam A, Howell A . Energy balance in early breast cancer patients receiving adjuvant chemotherapy. Breast Cancer Res Treat 2004; 83: 201–210.

    Article  CAS  PubMed  Google Scholar 

  51. Silver HJ, Dietrich MS, Murphy BA . Changes in body mass, energy balance, physical function, and inflammatory state in patients with locally advanced head and neck cancer treated with concurrent chemoradiation after low-dose induction chemotherapy. Head Neck 2007; 29: 893–900.

    Article  PubMed  Google Scholar 

  52. Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK et al. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 2001; 19: 2381–2389.

    Article  CAS  PubMed  Google Scholar 

  53. Campbell KL, Lane K, Martin AD, Gelmon KA, McKenzie DC . Resting energy expenditure and body mass changes in women during adjuvant chemotherapy for breast cancer. Cancer Nurs 2007; 30: 95–100.

    Article  CAS  PubMed  Google Scholar 

  54. Reis C, Liberman S, Pompeo AC, Srougi M, Halpern A, Filho WJ . Body composition alterations, energy expenditure and fat oxidation in elderly males suffering from prostate cancer, pre and post orchiectomy. Clinics (Sao Paulo) 2009; 64: 781–784.

    Article  Google Scholar 

  55. Fearon KC, Hansell DT, Preston T, Plumb JA, Davies J, Shapiro D et al. Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res 1988; 48: 2590–2595.

    CAS  PubMed  Google Scholar 

  56. Heymsfield SB, Gallagher D, Kotler DP, Wang Z, Allison DB, Heshka S . Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol Endocrinol Metab 2002; 282: E132–E138.

    Article  CAS  PubMed  Google Scholar 

  57. Hill RJ, Cleghorn GJ, Withers GD, Lewindon PJ, Ee LC, Connor F et al. Resting energy expenditure in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2007; 45: 342–346.

    Article  CAS  PubMed  Google Scholar 

  58. Hayes S, Davies PS, Parker T, Bashford J . Total energy expenditure and body composition changes following peripheral blood stem cell transplantation and participation in an exercise programme. Bone Marrow Transplant 2003; 31: 331–338.

    Article  CAS  PubMed  Google Scholar 

  59. Freake HC . Uncoupling proteins: beyond brown adipose tissue. Nutr Rev 1998; 56: 185–189.

    Article  CAS  PubMed  Google Scholar 

  60. Wu J, Cohen P, Spiegelman BM . Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013; 27: 234–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shellock FG, Riedinger MS, Fishbein MC . Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 1986; 111: 82–85.

    Article  CAS  PubMed  Google Scholar 

  62. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 2014; 20: 433–447.

    Article  CAS  PubMed  Google Scholar 

  63. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 2014; 513: 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 2015; 21: 33–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee P, Greenfield JR, Ho KK, Fulham MJ . A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2010; 299: E601–E606.

    Article  CAS  PubMed  Google Scholar 

  66. Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F et al. Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 2014; 41: 776–791.

    Article  CAS  PubMed  Google Scholar 

  67. de Vos-Geelen J, Fearon KC, Schols AM . The energy balance in cancer cachexia revisited. Curr Opin Clin Nutr Metab Care 2014; 17: 509–514.

    Article  PubMed  Google Scholar 

  68. Rousseau C, Bourbouloux E, Campion L, Fleury N, Bridji B, Chatal JF et al. Brown fat in breast cancer patients: analysis of serial (18)F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging 2006; 33: 785–791.

    Article  CAS  PubMed  Google Scholar 

  69. Chen YC, Cypess AM, Chen YC, Palmer M, Kolodny G, Kahn CR et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med 2013; 54: 1584–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. FAO/WHO/UNU. Human Energy Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation Rome, 2001.

  71. Baecke JA, Burema J, Frijters JE . A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 1982; 36: 936–942.

    Article  CAS  PubMed  Google Scholar 

  72. Pereira MA, FitzerGerald SJ, Gregg EW, Joswiak ML, Ryan WJ, Suminski RR et al. A collection of Physical Activity Questionnaires for health-related research. Med Sci Sports Exerc 1997; 29 (6 Suppl), S1–S205.

    CAS  PubMed  Google Scholar 

  73. Kohl HW, Blair SN, Paffenbarger RS Jr, Macera CA, Kronenfeld JJ . A mail survey of physical activity habits as related to measured physical fitness. Am J Epidemiol 1988; 127: 1228–1239.

    Article  CAS  PubMed  Google Scholar 

  74. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Theriault G . A method to assess energy expenditure in children and adults. Am J Clin Nutr 1983; 37: 461–467.

    Article  CAS  PubMed  Google Scholar 

  75. Ainslie P, Reilly T, Westerterp K . Estimating human energy expenditure: a review of techniques with particular reference to doubly labelled water. Sports Med 2003; 33: 683–698.

    Article  PubMed  Google Scholar 

  76. Broderick JM, Ryan J, O'Donnell DM, Hussey J . A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer 2014; 22: 1121–1130.

    Article  CAS  PubMed  Google Scholar 

  77. Irwin ML, Crumley D, McTiernan A, Bernstein L, Baumgartner R, Gilliland FD et al. Physical activity levels before and after a diagnosis of breast carcinoma: the Health, Eating, Activity, and Lifestyle (HEAL) study. Cancer 2003; 97: 1746–1757.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gibney E, Elia M, Jebb SA, Murgatroyd P, Jennings G . Total energy expenditure in patients with small-cell lung cancer: results of a validated study using the bicarbonate-urea method. Metabolism 1997; 46: 1412–1417.

    Article  CAS  PubMed  Google Scholar 

  79. Levine JA . Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin Endocrinol Metab 2002; 16: 679–702.

    Article  PubMed  Google Scholar 

  80. Levine JA . Measurement of energy expenditure. Public Health Nutr 2005; 8: 1123–1132.

    Article  PubMed  Google Scholar 

  81. Westerterp KR . Diet induced thermogenesis. Nutr Metab (Lond) 2004; 1: 5.

    Article  CAS  Google Scholar 

  82. Ravasco P . Aspects of taste and compliance in patients with cancer. Eur J Oncol Nurs 2005; 9 (Suppl 2), S84–S91.

    Article  PubMed  Google Scholar 

  83. Weston PM, King RF, Goode AW, Williams NS . Diet-induced thermogenesis in patients with gastrointestinal cancer cachexia. Clin Sci (Lond) 1989; 77: 133–138.

    Article  CAS  Google Scholar 

  84. Demark-Wahnefried W, Hars V, Conaway MR, Havlin K, Rimer BK, McElveen G et al. Reduced rates of metabolism and decreased physical activity in breast cancer patients receiving adjuvant chemotherapy. Am J Clin Nutr 1997; 65: 1495–1501.

    Article  CAS  PubMed  Google Scholar 

  85. Ross AC . Modern Nutrition in Health and Disease. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2014.

    Google Scholar 

  86. Prado CMM, Liefers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 2008; 9: 629–635.

    Article  PubMed  Google Scholar 

  87. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 1980; 69: 491–497.

    Article  CAS  PubMed  Google Scholar 

  88. Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C et al. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol 2015; 33: 90–99.

    Article  PubMed  Google Scholar 

  89. Frankenfield D, Roth-Yousey L, Compher C . Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc 2005; 105: 775–789.

    Article  PubMed  Google Scholar 

  90. Canadian Cancer Society's Advisory Committee on Cancer Statistics Canadian Cancer Statistics. Toronto; Ontario, 2015.

  91. Wallengren O, Lundholm K, Bosaeus I . Diagnostic criteria of cancer cachexia: relation to quality of life, exercise capacity and survival in unselected palliative care patients. Support Care Cancer 2013; 21: 1569–1577.

    Article  PubMed  Google Scholar 

  92. Tappy L . Metabolic consequences of overfeeding in humans. Curr Opin Clin Nutr Metab Care 2004; 7: 623–628.

    Article  PubMed  Google Scholar 

  93. Klein CJ, Stanek GS, Wiles CE 3rd . Overfeeding macronutrients to critically ill adults: metabolic complications. J Am Diet Assoc 1998; 98: 795–806.

    Article  CAS  PubMed  Google Scholar 

  94. Reeves MM, Capra S . Variation in the application of methods used for predicting energy requirements in acutely ill adult patients: a survey of practice. Eur J Clin Nutr 2003; 57: 1530–1535.

    Article  CAS  PubMed  Google Scholar 

  95. Bauer J, Reeves MM, Capra S . The agreement between measured and predicted resting energy expenditure in patients with pancreatic cancer: a pilot study. JOP 2004; 5: 32–40.

    PubMed  Google Scholar 

  96. Reeves MM, Battistutta D, Capra S, Bauer J, Davies PS . Resting energy expenditure in patients with solid tumors undergoing anticancer therapy. Nutrition 2006; 22: 609–615.

    Article  PubMed  Google Scholar 

  97. Zuconi CP, Ceolin Alves AL, Toulson Davisson Correia MI . Energy expenditure in women with breast cancer. Nutrition 2015; 31: 556–559.

    Article  PubMed  Google Scholar 

  98. Pirat A, Tucker AM, Taylor KA, Jinnah R, Finch CG, Canada TD et al. Comparison of measured versus predicted energy requirements in critically ill cancer patients. Respir Care 2009; 54: 487–494.

    PubMed  Google Scholar 

  99. Ceolin Alves AL, Zuconi CP, Correia MI . Energy expenditure in patients with esophageal, gastric, and colorectal cancer. JPEN J Parenter Enteral Nutr 2015; 40: 499–506.

    Article  PubMed  Google Scholar 

  100. McDoniel SO . Systematic review on use of a handheld indirect calorimeter to assess energy needs in adults and children. Int J Sport Nutr Exerc Metab 2007; 17: 491–500.

    Article  PubMed  Google Scholar 

  101. Reeves MM, Capra S, Bauer J, Davies PS, Battistutta D . Clinical accuracy of the MedGem indirect calorimeter for measuring resting energy expenditure in cancer patients. Eur J Clin Nutr 2005; 59: 603–610.

    Article  CAS  PubMed  Google Scholar 

  102. da Rocha EE, Alves VG, da Fonseca RB . Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care 2006; 9: 247–256.

    Article  PubMed  Google Scholar 

  103. Psota T, Chen KY . Measuring energy expenditure in clinical populations: rewards and challenges. Eur J Clin Nutr 2013; 67: 436–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dubois V, Simitsidellis I, Laurent MR, Jardi F, Saunders PT, Vanderschueren D et al. Enobosarm (GTx-024) modulates adult skeletal muscle mass independently of the androgen receptor in the satellite cell lineage. Endocrinology 2015; 156: 4522–4533.

    Article  CAS  PubMed  Google Scholar 

  105. von Haehling S, Anker SD . Treatment of cachexia: An overview of recent developments. Int J Cardiol 2015; 184: 736–742.

    Article  PubMed  Google Scholar 

  106. Dingemans AM, de Vos-Geelen J, Langen R, Schols AM . Phase II drugs that are currently in development for the treatment of cachexia. Expert Opin Investig Drugs 2014; 23: 1655–1669.

    Article  CAS  PubMed  Google Scholar 

  107. Fearon KC . Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer 2008; 44: 1124–1132.

    Article  CAS  PubMed  Google Scholar 

  108. Del Fabbro E, Hui D, Dalal S, Dev R, Nooruddin ZI, Bruera E . Clinical outcomes and contributors to weight loss in a cancer cachexia clinic. J Palliat Med 2011; 14: 1004–1008.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Maccio A, Madeddu C, Gramignano G, Mulas C, Floris C, Sanna E et al. A randomized phase III clinical trial of a combined treatment for cachexia in patients with gynecological cancers: evaluating the impact on metabolic and inflammatory profiles and quality of life. Gynecol Oncol 2012; 124: 417–425.

    Article  CAS  PubMed  Google Scholar 

  110. Arends J, Bodoky G, Bozzetti F, Fearon K, Muscaritoli M, Selga G et al. ESPEN Guidelines on Enteral Nutrition: non-surgical oncology. Clin Nutr 2006; 25: 245–259.

    Article  CAS  PubMed  Google Scholar 

  111. Moses AW, Slater C, Preston T, Barber MD, Fearon KC . Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer 2004; 90: 996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Skipworth RJ, Stene GB, Halele M, Hendry PO, Small AC, Blum D et al. Patient-focused endpoints in advanced cancer: criterion-based validation of accelerometer-based activity monitoring. Clin Nutr 2011; 30: 812–821.

    Article  PubMed  Google Scholar 

  113. Ravasco P, Monteiro-Grillo I, Camilo ME . Does nutrition influence quality of life in cancer patients undergoing radiotherapy? Radiother Oncol 2003; 67: 213–220.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Prado.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purcell, S., Elliott, S., Baracos, V. et al. Key determinants of energy expenditure in cancer and implications for clinical practice. Eur J Clin Nutr 70, 1230–1238 (2016). https://doi.org/10.1038/ejcn.2016.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.96

This article is cited by

Search

Quick links