Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Invited Review
  • Published:

Fatty acid–gene interactions, adipokines and obesity

Abstract

It is now recognized that the low-grade inflammation observed with obesity is associated with the development of a wide range of downstream complications. As such, there is considerable interest in elucidating the regulatory mechanisms underlying the production of inflammatory molecules to improve the prevention and treatment of obesity and its co-morbidities. White adipose tissue is no longer considered a passive reservoir for storing lipids, but rather an important organ influencing energy metabolism, insulin sensitivity and inflammation by the secretion of proteins, commonly referred to as adipokines. Dysregulation of several adipokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and adiponectin, contributes to the low-grade inflammation that is a hallmark of obesity. Evidence now suggests that fatty acids represent a class of molecules that can modulate adipokine production, thereby influencing inflammatory status. Although the precise molecular mechanisms by which dietary fats regulate adipokine production remain unclear, recent findings indicate that diet–gene interactions may have an important role in the transcriptional and secretory regulation of adipokines. Single-nucleotide polymorphisms in the genes encoding TNF-α, IL-6 and adiponectin can modify circulating levels of these adipokines and, subsequently, obesity-related phenotypes. This genetic variation can also alter the influence of dietary fatty acids on adipokine production. Therefore, the current review will show that it is paramount to consider both genetic information and dietary fat intake to unravel the inter-individual variability in inflammatory response observed in intervention protocols targeting obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Ajuwon KM, Spurlock ME (2005). Palmitate activates the NF-kappaB transcription factor and induces IL-6 and TNFalpha expression in 3T3-L1 adipocytes. J Nutr 135, 1841–1846.

    CAS  PubMed  Google Scholar 

  • Bessesen DH (2008). Update on obesity. J Clin Endocrinol Metab 93, 2027–2034.

    CAS  PubMed  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729–733.

    CAS  PubMed  Google Scholar 

  • Bougoulia M, Triantos A, Koliakos G (2006). Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones (Athens) 5, 192–199.

    Google Scholar 

  • Bradley RL, Fisher FF, Maratos-Flier E (2008). Dietary fatty acids differentially regulate production of TNF-alpha and IL-10 by murine 3T3-L1 adipocytes. Obesity (Silver Spring) 16, 938–944.

    CAS  Google Scholar 

  • Bueno AA, Oyama LM, de Oliveira C, Pisani LP, Ribeiro EB, Silveira VL et al. (2008). Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue. Pflugers Arch 455, 701–709.

    CAS  PubMed  Google Scholar 

  • Cardellini M, Perego L, D'Adamo M, Marini MA, Procopio C, Hribal ML et al. (2005). C-174G polymorphism in the promoter of the interleukin-6 gene is associated with insulin resistance. Diabetes Care 28, 2007–2012.

    CAS  PubMed  Google Scholar 

  • Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ (1996). The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr 63, 116–122.

    CAS  PubMed  Google Scholar 

  • Cawthorn WP, Heyd F, Hegyi K, Sethi JK (2007). Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ 14, 1361–1373.

    CAS  PubMed  Google Scholar 

  • Cawthorn WP, Sethi JK (2008). TNF-alpha and adipocyte biology. FEBS Lett 582, 117–131.

    CAS  PubMed  Google Scholar 

  • Chagnon YC, Perusse L, Lamothe M, Chagnon M, Nadeau A, Dionne FT et al. (1997). Suggestive linkages between markers on human 1p32–p22 and body fat and insulin levels in the Quebec family Study. Obes Res 5, 115–121.

    CAS  PubMed  Google Scholar 

  • Chandrasekar B, Fernandes G (1994). Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by omega-3 lipids in murine lupus nephritis. Biochem Biophys Res Commun 200, 893–898.

    CAS  PubMed  Google Scholar 

  • Clement K, Langin D (2007). Regulation of inflammation-related genes in human adipose tissue. J Intern Med 262, 422–430.

    CAS  PubMed  Google Scholar 

  • Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L (2001). Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 108, 1875–1881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME (2008). Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) 16, 1248–1255.

    CAS  Google Scholar 

  • DiGirolamo M, Fine JB, Tagra K, Rossmanith R (1998). Qualitative regional differences in adipose tissue growth and cellularity in male Wistar rats fed ad libitum. Am J Physiol 274, R1460–R1467.

    CAS  PubMed  Google Scholar 

  • Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A et al. (2010). Fibrosis in human adipose tissue: composition, distribution and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eder K, Baffy N, Falus A, Fulop AK (2009). The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 58, 727–736.

    CAS  PubMed  Google Scholar 

  • Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW et al. (1989). The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320, 265–271.

    CAS  PubMed  Google Scholar 

  • Fernandez-Real JM, Vendrell J, Ricart W (2005). Circulating adiponectin and plasma fatty acid profile. Clin Chem 51, 603–609.

    CAS  PubMed  Google Scholar 

  • Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F et al. (2006). Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91, 439–446.

    CAS  PubMed  Google Scholar 

  • Fessler MB, Rudel LL, Brown JM (2009). Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol 20, 379–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flachs P, Mohamed-Ali V, Horakova O, Rossmeisl M, Hosseinzadeh-Attar MJ, Hensler M et al. (2006). Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia 49, 394–397.

    CAS  PubMed  Google Scholar 

  • Fontaine-Bisson B, El-Sohemy A (2008). Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and plasma high-density lipoprotein-cholesterol concentrations in a population of young adults. J Nutrigenet Nutrigenomics 1, 215–223.

    CAS  PubMed  Google Scholar 

  • Fontaine-Bisson B, Wolever TM, Chiasson JL, Rabasa-Lhoret R, Maheux P, Josse RG et al. (2007). Tumor necrosis factor alpha −238G>A genotype alters postprandial plasma levels of free fatty acids in obese individuals with type 2 diabetes mellitus. Metabolism 56, 649–655.

    CAS  PubMed  Google Scholar 

  • Fumeron F, Aubert R, Siddiq A, Betoulle D, Pean F, Hadjadj S et al. (2004). Adiponectin gene polymorphisms and adiponectin levels are independently associated with the development of hyperglycemia during a 3-year period: the epidemiologic data on the insulin resistance syndrome prospective study. Diabetes 53, 1150–1157.

    CAS  PubMed  Google Scholar 

  • Gable DR, Matin J, Whittall R, Cakmak H, Li KW, Cooper J et al. (2007). Common adiponectin gene variants show different effects on risk of cardiovascular disease and type 2 diabetes in European subjects. Ann Hum Genet 71, 453–466.

    CAS  PubMed  Google Scholar 

  • Galic S, Oakhill JS, Steinberg GR (2010). Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316, 129–139.

    CAS  PubMed  Google Scholar 

  • Garcia-Escobar E, Rodriguez-Pacheco F, Garcia-Serrano S, Gomez-Zumaquero JM, Haro-Mora JJ, Soriguer F et al. (2010). Nutritional regulation of interleukin-6 release from adipocytes. Int J Obes (London) 34, 1328–1332.

    CAS  Google Scholar 

  • Gonzalez-Sanchez JL, Zabena CA, Martinez-Larrad MT, Fernandez-Perez C, Perez-Barba M, Laakso M et al. (2005). An SNP in the adiponectin gene is associated with decreased serum adiponectin levels and risk for impaired glucose tolerance. Obes Res 13, 807–812.

    CAS  PubMed  Google Scholar 

  • Good M, Newell FM, Haupt LM, Whitehead JP, Hutley LJ, Prins JB (2006). TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue—influence of BMI and adipose distribution. Diab Vasc Dis Res 3, 26–33.

    PubMed  Google Scholar 

  • Goyenechea E, Collins LJ, Parra D, Abete I, Crujeiras AB, O'Dell SD et al. (2009). The −11391 G/A polymorphism of the adiponectin gene promoter is associated with metabolic syndrome traits and the outcome of an energy-restricted diet in obese subjects. Horm Metab Res 41, 55–61.

    CAS  PubMed  Google Scholar 

  • Goyenechea E, Dolores Parra M, Alfredo Martinez J (2006). Weight regain after slimming induced by an energy-restricted diet depends on interleukin-6 and peroxisome-proliferator-activated-receptor-gamma2 gene polymorphisms. Br J Nutr 96, 965–972.

    CAS  PubMed  Google Scholar 

  • Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D (1992). Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52, 4113–4116.

    CAS  PubMed  Google Scholar 

  • Grimble RF, Howell WM, O'Reilly G, Turner SJ, Markovic O, Hirrell S et al. (2002). The ability of fish oil to suppress tumor necrosis factor alpha production by peripheral blood mononuclear cells in healthy men is associated with polymorphisms in genes that influence tumor necrosis factor alpha production. Am J Clin Nutr 76, 454–459.

    CAS  PubMed  Google Scholar 

  • Guerreiro CS, Ferreira P, Tavares L, Santos PM, Neves M, Brito M et al. (2009). Fatty acids, IL6, and TNFalpha polymorphisms: an example of nutrigenetics in Crohn's disease. Am J Gastroenterol 104, 2241–2249.

    PubMed  Google Scholar 

  • Gustafson B (2010). Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 17, 332–341.

    CAS  PubMed  Google Scholar 

  • Hamid YH, Urhammer SA, Jensen DP, Glumer C, Borch-Johnsen K, Jorgensen T et al. (2004). Variation in the interleukin-6 receptor gene associates with type 2 diabetes in Danish whites. Diabetes 53, 3342–3345.

    CAS  PubMed  Google Scholar 

  • Harkins JM, Moustaid-Moussa N, Chung YJ, Penner KM, Pestka JJ, North CM et al. (2004). Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. J Nutr 134, 2673–2677.

    CAS  PubMed  Google Scholar 

  • He K, Liu K, Daviglus ML, Jenny NS, Mayer-Davis E, Jiang R et al. (2009). Associations of dietary long-chain n-3 polyunsaturated fatty acids and fish with biomarkers of inflammation and endothelial activation (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 103, 1238–1243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996). IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668.

    CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91.

    CAS  PubMed  Google Scholar 

  • Huth C, Illig T, Herder C, Gieger C, Grallert H, Vollmert C et al. (2009). Joint analysis of individual participants' data from 17 studies on the association of the IL6 variant −174G>C with circulating glucose levels, interleukin-6 levels, and body mass index. Ann Med 41, 128–138.

    CAS  PubMed  Google Scholar 

  • Junyent M, Parnell LD, Lai CQ, Arnett DK, Tsai MY, Kabagambe EK et al. (2009). ADAM17_i33708A>G polymorphism interacts with dietary n-6 polyunsaturated fatty acids to modulate obesity risk in the Genetics of Lipid Lowering Drugs and Diet Network study. Nutr Metab Cardiovasc Dis 20, 698–705.

    PubMed  PubMed Central  Google Scholar 

  • Kadowaki T, Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr Rev 26, 439–451.

    CAS  PubMed  Google Scholar 

  • Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A (1995). Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem 270, 23780–23784.

    CAS  PubMed  Google Scholar 

  • Karastergiou K, Mohamed-Ali V (2010). The autocrine and paracrine roles of adipokines. Mol Cell Endocrinol 318, 69–78.

    CAS  PubMed  Google Scholar 

  • Kim J, Choi YS, Lim S, Yea K, Yoon JH, Jun DJ et al. (2010). Comparative analysis of the secretory proteome of human adipose stromal vascular fraction cells during adipogenesis. Proteomics 10, 394–405.

    CAS  PubMed  Google Scholar 

  • Klipstein-Grobusch K, Mohlig M, Spranger J, Hoffmann K, Rodrigues FU, Sharma AM et al. (2006). Interleukin-6 g.−174G>C promoter polymorphism is associated with obesity in the EPIC-Potsdam Study. Obesity (Silver Spring) 14, 14–18.

    CAS  Google Scholar 

  • Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M et al. (2002). Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 51, 2325–2328.

    CAS  PubMed  Google Scholar 

  • Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, Parker MG et al. (1997). Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11, 779–791.

    CAS  PubMed  Google Scholar 

  • Kristiansen OP, Mandrup-Poulsen T (2005). Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54 (Suppl 2), S114–S124.

    CAS  PubMed  Google Scholar 

  • Kyriakou T, Collins LJ, Spencer-Jones NJ, Malcolm C, Wang X, Snieder H et al. (2008). Adiponectin gene ADIPOQ SNP associations with serum adiponectin in two female populations and effects of SNPs on promoter activity. J Hum Genet 53, 718–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lihn AS, Bruun JM, He G, Pedersen SB, Jensen PF, Richelsen B (2004). Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Mol Cell Endocrinol 219, 9–15.

    CAS  PubMed  Google Scholar 

  • Liu M, Liu F (2009). Transcriptional and post-translational regulation of adiponectin. Biochem J 425, 41–52.

    PubMed  Google Scholar 

  • Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K et al. (2001). PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099.

    CAS  PubMed  Google Scholar 

  • Maury E, Brichard SM (2010). Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314, 1–16.

    CAS  PubMed  Google Scholar 

  • Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS et al. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82, 4196–4200.

    CAS  PubMed  Google Scholar 

  • Momiyama Y, Ohmori R, Fayad ZA, Kihara T, Tanaka N, Kato R et al. (2010). Associations between plasma C-reactive protein levels and the severities of coronary and aortic atherosclerosis. J Atheroscler Thromb 17, 460–467.

    CAS  PubMed  Google Scholar 

  • Moreno-Navarrete JM, Catalan V, Ortega F, Gomez-Ambrosi J, Ricart W, Fruhbeck G et al. (2010). Circulating omentin concentration increases after weight loss. Nutr Metab (London) 7, 27.

    Google Scholar 

  • Mutch DM, Rouault C, Keophiphath M, Lacasa D, Clement K (2009a). Using gene expression to predict the secretome of differentiating human preadipocytes. Int J Obes (London) 33, 354–363.

    CAS  Google Scholar 

  • Mutch DM, Tordjman J, Pelloux V, Hanczar B, Henegar C, Poitou C et al. (2009b). Needle and surgical biopsy techniques differentially affect adipose tissue gene expression profiles. Am J Clin Nutr 89, 51–57.

    CAS  PubMed  Google Scholar 

  • Nagao K, Inoue N, Wang YM, Yanagita T (2003). Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in Zucker diabetic fatty (fa/fa) rats. Biochem Biophys Res Commun 310, 562–566.

    CAS  PubMed  Google Scholar 

  • Nair S, Lee YH, Rousseau E, Cam M, Tataranni PA, Baier LJ et al. (2005). Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia 48, 1784–1788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieters A, Becker N, Linseisen J (2002). Polymorphisms in candidate obesity genes and their interaction with dietary intake of n-6 polyunsaturated fatty acids affect obesity risk in a sub-sample of the EPIC-Heidelberg cohort. Eur J Nutr 41, 210–221.

    CAS  PubMed  Google Scholar 

  • Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H et al. (2002). Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51, 2734–2741.

    CAS  PubMed  Google Scholar 

  • Oller do Nascimento CM, Ribeiro EB, Oyama LM (2009). Metabolism and secretory function of white adipose tissue: effect of dietary fat. An Acad Bras Cienc 81, 453–466.

    CAS  PubMed  Google Scholar 

  • Perez-Matute P, Perez-Echarri N, Martinez JA, Marti A, Moreno-Aliaga MJ (2007). Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-alpha. Br J Nutr 97, 389–398.

    CAS  PubMed  Google Scholar 

  • Petersson H, Lind L, Hulthe J, Elmgren A, Cederholm T, Riserus U (2009). Relationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population. Atherosclerosis 203, 298–303.

    CAS  PubMed  Google Scholar 

  • Poitou C, Lacorte JM, Coupaye M, Bertrais S, Bedel JF, Lafon N et al. (2005). Relationship between single nucleotide polymorphisms in leptin, IL6 and adiponectin genes and their circulating product in morbidly obese subjects before and after gastric banding surgery. Obes Surg 15, 11–23.

    PubMed  Google Scholar 

  • Potapov VA, Chistiakov DA, Dubinina A, Shamkhalova MS, Shestakova MV, Nosikov VV (2008). Adiponectin and adiponectin receptor gene variants in relation to type 2 diabetes and insulin resistance-related phenotypes. Rev Diabet Stud 5, 28–37.

    PubMed  PubMed Central  Google Scholar 

  • Poulain-Godefroy O, Le Bacquer O, Plancq P, Lecoeur C, Pattou F, Fruhbeck G et al. (2010). Inflammatory role of Toll-like receptors in human and murine adipose tissue. Mediators Inflamm 2010, 823486.

    PubMed  PubMed Central  Google Scholar 

  • Prins JB, Niesler CU, Winterford CM, Bright NA, Siddle K, O'Rahilly S et al. (1997). Tumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes 46, 1939–1944.

    CAS  PubMed  Google Scholar 

  • Qi L, Doria A, Manson JE, Meigs JB, Hunter D, Mantzoros CS et al. (2006). Adiponectin genetic variability, plasma adiponectin, and cardiovascular risk in patients with type 2 diabetes. Diabetes 55, 1512–1516.

    CAS  PubMed  Google Scholar 

  • Qi L, Rifai N, Hu FB (2007a). Interleukin-6 receptor gene variations, plasma interleukin-6 levels, and type 2 diabetes in US Women. Diabetes 56, 3075–3081.

    CAS  PubMed  Google Scholar 

  • Qi L, Zhang C, van Dam RM, Hu FB (2007b). Interleukin-6 genetic variability and adiposity: associations in two prospective cohorts and systematic review in 26 944 individuals. J Clin Endocrinol Metab 92, 3618–3625.

    CAS  PubMed  Google Scholar 

  • Razquin C, Martinez JA, Martinez-Gonzalez MA, Salas-Salvado J, Estruch R, Marti A (2009). A 3-year Mediterranean-style dietary intervention may modulate the association between adiponectin gene variants and body weight change. Eur J Nutr 49, 311–319.

    PubMed  Google Scholar 

  • Sesti G, Perego L, Cardellini M, Andreozzi F, Ricasoli C, Vedani P et al. (2005). Impact of common polymorphisms in candidate genes for insulin resistance and obesity on weight loss of morbidly obese subjects after laparoscopic adjustable gastric banding and hypocaloric diet. J Clin Endocrinol Metab 90, 5064–5069.

    CAS  PubMed  Google Scholar 

  • Shah R, Lu Y, Hinkle CC, McGillicuddy FC, Kim R, Hannenhalli S et al. (2009). Gene profiling of human adipose tissue during evoked inflammation in vivo. Diabetes 58, 2211–2219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116, 3015–3025.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sookoian SC, Gonzalez C, Pirola CJ (2005). Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obes Res 13, 2122–2131.

    PubMed  Google Scholar 

  • Stenholm S, Koster A, Alley DE, Visser M, Maggio M, Harris TB et al. (2009). Adipocytokines and the metabolic syndrome among older persons with and without obesity—the InCHIANTI Study. Clin Endocrinol (Oxf) 73, 55–65.

    Google Scholar 

  • Stenlof K, Wernstedt I, Fjallman T, Wallenius V, Wallenius K, Jansson JO (2003). Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab 88, 4379–4383.

    PubMed  Google Scholar 

  • Thorand B, Baumert J, Doring A, Herder C, Kolb H, Rathmann W et al. (2006). Sex differences in the relation of body composition to markers of inflammation. Atherosclerosis 184, 216–224.

    CAS  PubMed  Google Scholar 

  • Trayhurn P, Wood IS (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92, 347–355.

    CAS  PubMed  Google Scholar 

  • Trujillo ME, Scherer PE (2005). Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 257, 167–175.

    CAS  PubMed  Google Scholar 

  • Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614.

    CAS  PubMed  Google Scholar 

  • van Dijk SJ, Feskens EJ, Bos MB, Hoelen DW, Heijligenberg R, Bromhaar MG et al. (2009). A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr 90, 1656–1664.

    CAS  PubMed  Google Scholar 

  • Vasseur F, Meyre D, Froguel P (2006). Adiponectin, type 2 diabetes and the metabolic syndrome: lessons from human genetic studies. Expert Rev Mol Med 8, 1–12.

    PubMed  Google Scholar 

  • Vaxillaire M, Dechaume A, Vasseur-Delannoy V, Lahmidi S, Vatin V, Lepretre F et al. (2006). Genetic analysis of ADIPOR1 and ADIPOR2 candidate polymorphisms for type 2 diabetes in the Caucasian population. Diabetes 55, 856–861.

    CAS  PubMed  Google Scholar 

  • Voros G, Maquoi E, Collen D, Lijnen HR (2003). Differential expression of plasminogen activator inhibitor-1, tumor necrosis factor-alpha, TNF-alpha converting enzyme and ADAMTS family members in murine fat territories. Biochim Biophys Acta 1625, 36–42.

    CAS  PubMed  Google Scholar 

  • Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE (2001). Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9, 414–417.

    CAS  PubMed  Google Scholar 

  • Wang B, Trayhurn P (2006). Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch 452, 418–427.

    CAS  PubMed  Google Scholar 

  • Wang P, Mariman E, Renes J, Keijer J (2008). The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol 216, 3–13.

    CAS  PubMed  Google Scholar 

  • Warodomwichit D, Shen J, Arnett DK, Tsai MY, Kabagambe EK, Peacock JM et al. (2009). ADIPOQ polymorphisms, monounsaturated fatty acids, and obesity risk: the GOLDN study. Obesity (Silver Spring) 17, 510–517.

    CAS  Google Scholar 

  • Weldon SM, Mullen AC, Loscher CE, Hurley LA, Roche HM (2007). Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem 18, 250–258.

    CAS  PubMed  Google Scholar 

  • Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997). Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94, 3195–3199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 1288–1295.

    CAS  PubMed  Google Scholar 

  • Yeop Han C, Kargi AY, Omer M, Chan CK, Wabitsch M, O'Brien KD et al. (2010). Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 59, 386–396.

    PubMed  Google Scholar 

  • You T, Nicklas BJ (2006). Chronic inflammation: role of adipose tissue and modulation by weight loss. Curr Diabetes Rev 2, 29–37.

    PubMed  Google Scholar 

  • Zhao LJ, Xiong DH, Pan F, Liu XG, Recker RR, Deng HW (2008). Polymorphisms of the tumor necrosis factor-alpha receptor 2 gene are associated with obesity phenotypes among 405 Caucasian nuclear families. Hum Genet 124, 171–177.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs David Dyck and William Bettger for their input on this manuscript. DMM is supported by a grant from the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Mutch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stryjecki, C., Mutch, D. Fatty acid–gene interactions, adipokines and obesity. Eur J Clin Nutr 65, 285–297 (2011). https://doi.org/10.1038/ejcn.2010.277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2010.277

Keywords

This article is cited by

Search

Quick links