Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Communication
  • Published:

Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet

Abstract

Objective: To investigate the contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet.

Design: This includes the following (i) estimation of the daily intakes of beverages in Spain, from national food consumption data obtained from annual surveys of 5400 households, 700 hotels and restaurants and 200 institutions; (ii) determination of total antioxidant capacity in the selected beverages using two complementary procedures: ferric reducing ability of plasma (FRAP), which measures the ferric reduction capacity, and ABTS, which measures the radical scavenging capacity; (iii) determination of the antioxidant capacity in both lipophilic and hydrophilic extracts of the beverages; (iv) determination of the antioxidant efficiency of the lipophilic and hydrophilic phase of the beverages; and (v) estimation of the intake of dietary antioxidants from beverages in comparison with the daily requirements of antioxidant vitamins C and E.

Results: The contribution of beverages to the antioxidant intake in the Spanish diet is estimated at 1623 mg of vitamin E and 598 mg of vitamin C by FRAP, and 1521 mg of vitamin E and 556 mg of vitamin C by ABTS. Coffee is the main contributor (66 and 61% by FRAP and ABTS, respectively), followed by red wine (16 and 22%), fruit juices (6 and 5%), beer (4 and 5%), tea (3 and 5%) and milk (4 and 1%).

Conclusions: Beverages account for a very high proportion of dietary antioxidant intake as compared to intake of antioxidant vitamins C and E. Although their metabolic effect must be affected by the bioavailability of the antioxidants, the significance of this intake for antioxidant status and health should be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abu-Amsha R, Croft KD, Puddey IB, Proudfost JM & Beilin LJ (1996): Phenolic content of various beverages determines the extent of inhibition of human serum and low-density lipoprotein oxidation in vitro: identification and mechanism of action of some cinnamic acid derivates from red wine. Clin. Sci. London 91, 449–458.

    Article  CAS  Google Scholar 

  • Abushita A, Hebshi E, Daood H & Biaes P (1998): Determination of antioxidant vitamins in tomatoes. Food Chem. 60, 207–212.

    Article  Google Scholar 

  • Arnao M, Cano A & Acosta M (2001): The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73, 239–244.

    Article  CAS  Google Scholar 

  • Aruoma O (1998): Free radicals, oxidative stress and antioxidants in human health and disease. J. Am. Oil Chemists Soc. 75, 199–212.

    Article  CAS  Google Scholar 

  • Aruoma O, Spencer J, Warren D, Jenner P, Butler J & Halliwell B (1997): Characterization of food antioxidants, illustrated using commercial garlic and ginger preparations. Food Chem. 60, 149–156.

    Article  CAS  Google Scholar 

  • Benzie IFF & Strain JJ (1996): The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239, 70–76.

    Article  CAS  Google Scholar 

  • Benzie IFF & Szeto YT (1999): Total antioxidant capacity of teas by the ferric reducing antioxidant power assay. J. Agric. Food Chem. 47, 633–636.

    Article  CAS  Google Scholar 

  • Bonilla F, Mayen J, Merida J & Medina M (1999): Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem. 66, 209–215.

    Article  CAS  Google Scholar 

  • Bravo L (1998): Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56, 317–333.

    Article  CAS  Google Scholar 

  • Chambers SJ, Lambert N, Plumb GW & Williamson G (1996): Evaluation of the antioxidant properties of a methanolic extract from ‘juice plus fruit’ and ‘juice plus vegetable’ (dietary supplements). Food Chem. 57, 271–274.

    Article  CAS  Google Scholar 

  • Che Man Y & Tan C (1999): Effects of natural and synthetic antioxidants on changes in refined, bleached and deodorized palm olein during deep-fat frying potato chips. J. Am. Oil Chemists Soc. 76, 1717–1721.

    Google Scholar 

  • Clare DA & Swaisgood HE (2000): Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187–1195.

    Article  CAS  Google Scholar 

  • Criqui MH (1998): Do known cardiovascular risk factors mediate the effect of alcohol on cardiovascular disease? Novartis Found. Symp. 216, 159–167.

    CAS  PubMed  Google Scholar 

  • Denke MA (2000): Nutritional and health benefits of beer. Am. J. Med. Sci. 320, 320–326.

    Article  CAS  Google Scholar 

  • Ewald C, Fjelkner-Moding S, Johansson K, Sjöholm I & Ákesson B (1999): Effect of processing on major flavonoids in processed onions, green beans, and peas. Food Chem. 64, 231–235.

    Article  CAS  Google Scholar 

  • Frankel EN & Meyer AS (2000): The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 80, 1925–1941.

    Article  CAS  Google Scholar 

  • Frankel E, Waterhouse A & Teissedre P (1995): Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 43, 890–894.

    Article  CAS  Google Scholar 

  • Frei B (1994): Natural Antioxidant in Human Health and Disease. San Diego: Academic Press.

    Google Scholar 

  • Furuta S, Nishiba Y & Suda I (1997): Fluorometric assay for screening antioxidative activity of vegetables. J. Food Sci. 62, 526–528.

    Article  CAS  Google Scholar 

  • Ganthavorn C & Hughes J (1997): Inhibition of soybean oil oxidation by extracts of dry beans (Phaseolus vulgaris). J. Am. Oil Chemists Soc. 74, 1025–1030.

    Article  CAS  Google Scholar 

  • Gazzani G, Papetti A, Massolini G & Daglia M (1998): Anti- and prooxidant activity of water soluble components of some common diet vegetables and the effect of thermal treatment. J. Agric. Food Chem. 46, 4118–4122.

    Article  CAS  Google Scholar 

  • Gey K, Paska P, Jordan P & Moser U (1991): Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am. J. Clin. Nutr. 53(Suppl), S32–S34.

    Google Scholar 

  • Ghiselli A, Serafini M, Natella F & Scaccini C (2000): Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Rad. Biol. Med. 29, 1106–1114.

    Article  CAS  Google Scholar 

  • Heinonen M, Meyer AS & Frankel EN (1998): Antioxidant activity of berry phenolics on human low-density lipoprotein oxidation. J. Agric. Food Chem. 46, 4107–4112.

    Article  CAS  Google Scholar 

  • Hodgson JM, Puddoy IB, Burke V, Beilin LJ & Jordan N (1999): Effects on blood pressure of drinking green and black tea. J. Hypertens. 91, 449–458.

    Google Scholar 

  • Hodgson JM, Puddey IB, Croft KD, Burke V, Mori TA, Caccetta RA & Beilin LJ (2000): Acute effects of ingestion of black and green tea on lipoprotein oxidation. Am. J. Clin. Nutr. 71, 1103–1107.

    Article  CAS  Google Scholar 

  • Hollman P, Hertog M & Katan M (1996): Analysis and health effects of flavonoids. Food Chem. 57, 43–46.

    Article  CAS  Google Scholar 

  • Kalt W, Forney CF, Martin A & Prior RL (1999): Antioxidant capacity, vitamin C. Phenolics and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 47, 4638–4644.

    Article  CAS  Google Scholar 

  • Larrauri J, Sánchez-Moreno C, Rupérez P & Saura-Calixto F (1999): Free radical scavenging capacity in the aging of selected red Spanish wines. J. Agric. Food Chem. 47, 1603–1606.

    Article  CAS  Google Scholar 

  • Lin J, Lin C, Liang Y, Lin-Shiau S & Juan IM (1998): Survey of catechins, gallic acid and methylxanthines in green oolong, pu-erh and black teas. J. Agric. Food Chem. 46, 3635–3642.

    Article  CAS  Google Scholar 

  • Long LH, Lan AN, Hsuan FT & Halliwell B (1999): Generation of hydrogen peroxide by antioxidant beverages and the effect of milk addition. Is cocoa the best beverage? Free Rad. Res. 31, 67–71.

    Article  CAS  Google Scholar 

  • Lorimier A (2000): Alcohol, wine and health. Am. J. Surg. 180, 357–361.

    Article  Google Scholar 

  • Mackerras D . (1995): Antioxidant health. Fruits and vegetables of supplements? Food Aust. 47(Suppl.), S3–S23.

    Google Scholar 

  • MAPA (2000): La alimentación en España. Madrid.

  • Markus F, Daood H, Kapitány J & Biacs P (1999): Change in the carotenoid and antioxidant content of spice red pepper (Paprika) as a function of ripening and some technological factors. J. Agric. Food Chem. 47, 100–107.

    Article  CAS  Google Scholar 

  • Mazza G (1998): Functional Foods: Biochemical and Processing Aspects. Pennsylvania: Technomic Publication.

    Google Scholar 

  • McBrian DCH & Slater TF (1982): Free Radicals, Lipid Peroxidation and Cancer. New York: Academic Press.

    Google Scholar 

  • Meyer A, Heinomen M & Frankel E (1998): Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin and ellagic acid on human LDL oxidation. Food Chem. 61, 71–75.

    Article  CAS  Google Scholar 

  • Montreau FR (1972): Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteau. Connaiss. Vigne Vin. 24, 397–404.

    Google Scholar 

  • Nakagami T, Nanaumi-Tamura N, Toyomura K, Nakamura T & Shigehisa T (1995): Dietary flavonoids as potential natural biological response modifiers affecting the autoimmune system. J. Food Sci. 60, 653–656.

    Article  CAS  Google Scholar 

  • Pérez Gavilán J & Pérez Gavilán JP (1984): Bioquímica y Microbiología de la leche. México D.F: Limusa S.A.

    Google Scholar 

  • Prior RL & Cao G (1999): Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc. Soc. Exp. Biol. Med. 220, 255–261.

    Article  CAS  Google Scholar 

  • Prior RL, Cao G, Martin A, Soffic E, McEwen J, O'Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G & Mainland CM (1998): Antioxidant capacity as influence by total phenolic and anthocyanin content, maturity and variety of Vaccinium species. J. Agric. Food Chem. 45, 2686–2693.

    Article  Google Scholar 

  • Pulido R, Bravo L & Saura-Calixto F (2000): Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402.

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M & Rice-Evans C (1999): Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26, 1231–1237.

    Article  CAS  Google Scholar 

  • Richelle M, Tavazzi I & Offord E (2001): Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J. Agric. Food Chem. 49, 3438–3442.

    Article  CAS  Google Scholar 

  • Robards K, Prenzler PD, Tucker G, Swatsitang P & Glover W (1999): Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66, 401–436.

    Article  CAS  Google Scholar 

  • Saleh M, Hashem F & Olombitza K (1998): Study of Citrus taitensis and radical scavenger activity of the flavonoids isolated. Food Chem. 63, 397–400.

    Article  CAS  Google Scholar 

  • Sánchez-Moreno C, Jiménez-Escrig A & Saura-Calixto F (2000a): Study of low-density lipoprotein oxidizability indexes to measure the antioxidant activity of dietary polyphenols. Nutr. Res. 20, 941–953.

    Article  Google Scholar 

  • Sánchez-Moreno C, Larrauri J & Saura-Calixto F (1998): A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76, 270–276.

    Article  Google Scholar 

  • Sánchez-Moreno C, Larrauri J & Saura-Calixto F (1999): Free radical scavenging capacity of selected red, rosé and white wines. J. Sci. Food Agric. 79, 1301–1304.

    Article  Google Scholar 

  • Sánchez-Moreno C, Satué-Gracia T & Frankel E (2000b): Antioxidant activity of selected Spanish wines in corn oil emulsions. J. Agric. Food Chem. 48, 5581–5587.

    Article  Google Scholar 

  • Serafini M, Maiani G, Mayer B, Hermetter A, Castilla P, Lasunción MA, Wilczak J, Ostaszewski P, Pulido R & Saura-Calixto F (2002): Comparison of total antioxidant capacity assays: a European inter-laboratory study. In: Bioactive Compounds in Plant Foods, R Amado(c), B Abt, L Bravo, J Goni & F Savra-Calixto eds., European Scientific Conference, pp 210–212. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Schwartz J (1996): The dual roles of nutrients as antioxidants and prooxidants: their effects on tumor cell growth. J. Nutr. 126(Suppl.), S1221–S1227.

    Article  Google Scholar 

  • Shah NP (2000): Effects of milk-derived bioactives: an overview. Br. J. Nutr. 84(Suppl. 1), S3–S10.

    CAS  PubMed  Google Scholar 

  • Simonetti P, Pietta P & Testolin G (1997): Polyphenol content on total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 45, 1152–1155.

    Article  CAS  Google Scholar 

  • Wang H, Nair MG, Strasburg GM, Booren AM & Gray JI (1999): Novel antioxidant compounds from tart cherries (Prunus cerasus). J. Nat. Prod. 62, 86–88.

    Article  CAS  Google Scholar 

  • Wen L, Wrolstad R & Hsu V (1999): Characterization of sinapyl derivatives in pineapple (Ananas comosus) and sage (Salvia officinalis) by enzyme assisted ensiling (ENLAC). J. Agric. Food Chem. 47, 2959–2962.

    Article  Google Scholar 

Download references

Acknowledgements

RP thanks the Comunidad de Madrid for granting her a scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: F Saura-Calixto.

Contributors: All authors have contributed to the design and development of the study, interpretation of data and writing the manuscript. FSC focused on the design and discussion of the results. RP focused on methodology preparation and interpretation of the results. MHG focused on analytical work and discussion of data.

Corresponding author

Correspondence to F Saura-Calixto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulido, R., Hernández-García, M. & Saura-Calixto, F. Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. Eur J Clin Nutr 57, 1275–1282 (2003). https://doi.org/10.1038/sj.ejcn.1601685

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601685

Keywords

This article is cited by

Search

Quick links