Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systematic investigation of genetic variability in 111 human genes—implications for studying variable drug response

Abstract

In order to identify single-nucleotide polymorphisms (SNPs) and analyze their characteristics in a set of 111 genes, we resequenced exons and flanking regions in an average of 170 chromosomes from individuals of European origin. Genetic variability was decreased in noncoding regions highly conserved between human and rodents, indicating functional relevance of these regions. Furthermore, diversity of coding nonsynonymous SNPs was found lower in regions encoding a known protein sequence motif. SNPs predicted to be of functional significance were more common amongst rare variants. Despite the significant recent growth of SNP numbers in public SNP databases, only a small fraction of these rare variants is represented. This may be relevant in the investigation of the genetic causes of severe side effects, for which rare variants are plausible candidates. Estimation of htSNPs reduces the genotyping effort required in capturing common haplotypes, for certain genes, however, this accounts for only a small fraction of haplotype diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Goldstein DB, Tate SK, Sisodiya SM . Pharmacogenetics goes genomic. Nat Rev Genet 2003; 4: 937–947.

    Article  CAS  PubMed  Google Scholar 

  2. Evans WE, Johnson JA . Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2001; 2: 9–39.

    Article  CAS  PubMed  Google Scholar 

  3. Consortium TIH . The International HapMap Project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

  4. Leabman MK, Huang CC, DeYoung J, Carlson EJ, Taylor TR, de la Cruz M et al. Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci USA 2003; 100: 5896–5901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freudenberg-Hua Y, Freudenberg J, Kluck N, Cichon S, Propping P, Nothen MM . Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population. Genome Res 2003; 13: 2271–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sunyaev SR, Lathe III WC, Ramensky VE, Bork P . SNP frequencies in human genes an excess of rare alleles and differing modes of selection. Trends Genet 2000; 16: 335–337.

    Article  CAS  PubMed  Google Scholar 

  7. Abbott A . With your genes? Take one of these, three times a day. Nature 2003; 425: 760–762.

    Article  CAS  PubMed  Google Scholar 

  8. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 1999; 22: 239–247.

    Article  CAS  PubMed  Google Scholar 

  9. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22: 231–238.

    Article  CAS  PubMed  Google Scholar 

  10. Tiret L, Poirier O, Nicaud V, Barbaux S, Herrmann SM, Perret C et al. Heterogeneity of linkage disequilibrium in human genes has implications for association studies of common diseases. Hum Mol Genet 2002; 11: 419–429.

    Article  CAS  PubMed  Google Scholar 

  11. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S et al. The Pfam protein families database. Nucleic Acids Res 2004; 32 Database issue: D138–D141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hulo N, Sigrist CJ, Le Saux V, Langendijk-Genevaux PS, Bordoli L, Gattiker A et al. Recent improvements to the PROSITE database. Nucleic Acids Res 2004; 32 Database issue: D134–D137.

    Article  Google Scholar 

  13. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC et al. Human-mouse alignments with BLASTZ. Genome Res 2003; 13: 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Birney E, Andrews D, Bevan P, Caccamo M, Cameron G, Chen Y et al. Ensembl 2004. Nucleic Acids Res 2004; 32: D468–D470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29: 233–237.

    Article  CAS  PubMed  Google Scholar 

  16. Palmer LJ, Silverman ES, Weiss ST, Drazen JM . Pharmacogenetics of asthma. Am J Respir Crit Care Med 2002; 165: 861–866.

    Article  PubMed  Google Scholar 

  17. Hwa J, Garriga P, Liu X, Khorana HG . Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc Natl Acad Sci USA 1997; 94: 10571–10576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bosch L, Ramon E, Del Valle LJ, Garriga P . Structural and functional role of helices I and II in rhodopsin. A novel interplay evidenced by mutations at Gly-51 and Gly-89 in the transmembrane domain. J Biol Chem 2003; 278: 20203–20209.

    Article  CAS  PubMed  Google Scholar 

  19. Eiden LE, Schafer MK, Weihe E, Schutz B . The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 2004; 447: 636–640.

    Article  CAS  PubMed  Google Scholar 

  20. Tsunoda T, Lathrop GM, Sekine A, Yamada R, Takahashi A, Ohnishi Y et al. Variation of gene-based SNPs and linkage disequilibrium patterns in the human genome. Hum Mol Genet 2004; 13: 1623–1632.

    Article  CAS  PubMed  Google Scholar 

  21. Crawford DC, Carlson CS, Rieder MJ, Carrington DP, Yi Q, Smith JD et al. Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. Am J Hum Genet 2004; 74: 610–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wall JD, Pritchard JK . Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 2003; 4: 587–597.

    Article  CAS  PubMed  Google Scholar 

  23. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL et al. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 2004; 32 Database issue: D35–D40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000; 132: 365–386.

    CAS  PubMed  Google Scholar 

  26. Sanger F, Nicklen S, Coulson AR . DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ewing B, Hillier L, Wendl MC, Green P . Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8: 175–185.

    Article  CAS  PubMed  Google Scholar 

  28. Nickerson DA, Tobe VO, Taylor SL . PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 1997; 25: 2745–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gordon D, Abajian C, Green P . Consed: a graphical tool for sequence finishing. Genome Res 1998; 8: 195–202.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Schwartz S, Wagner L, Miller W . A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7: 203–214.

    Article  CAS  PubMed  Google Scholar 

  31. Grantham R . Amino acid difference formula to help explain protein evolution. Science 1974; 185: 862–864.

    Article  CAS  PubMed  Google Scholar 

  32. Hartl DL, Clark AG . Principles of Population Genetics. Sinauer Associates, Inc.: Sunderland, MA, 1997.

    Google Scholar 

  33. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  35. Avi-Itzhak HI, Su X, De La Vega FM . Selection of minimum subsets of single nucleotide polymorphisms to capture haplotype block diversity. Pac Symp Biocomput 2003: 466–477.

Download references

Acknowledgements

We thank Dr Christine Braeman for help in preparing the manuscript. This work was supported by grants from the German Human Genome Project (DHGP) and the German National Genome Research Network (NGFN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Freudenberg.

Additional information

Database submission: All SNPs were submitted to dbSNP with complete genotype and flanking sequence information (ss12586678–ss12587076, ss28447039-ss28447415).

DUALITY OF INTEREST

None declared.

Supplementary Information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg-Hua, Y., Freudenberg, J., Winantea, J. et al. Systematic investigation of genetic variability in 111 human genes—implications for studying variable drug response. Pharmacogenomics J 5, 183–192 (2005). https://doi.org/10.1038/sj.tpj.6500306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500306

Keywords

This article is cited by

Search

Quick links