Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Breast cancer metastases are molecularly distinct from their primary tumors

Abstract

Metastases have been widely thought to arise from rare, selected, mutation-bearing cells in the primary tumor. Recently, however, it has been proposed that breast tumors are imprinted ab initio with metastatic ability. Thus, there is a debate over whether ‘phenotypic’ disease progression is really associated with ‘molecular’ progression. We profiled 26 matched primary breast tumors and lymph node metastases and identified 270 probesets that could discriminate between the two categories. We then used an independent cohort of breast tumors (81 samples) and unmatched distant metastases (32 samples) to validate and refine this list down to a 126-probeset list. A representative subset of these genes was subjected to analysis by in situ hybridization, on a third independent cohort (57 primary breast tumors and matched lymph node metastases). This not only confirmed the expression profile data, but also allowed us to establish the cellular origin of the signals. One-third of the analysed representative genes (4 of 11) were expressed by the epithelial component. The four epithelial genes alone were able to discriminate primary breast tumors from their metastases. Finally, engineered alterations in the expression of two of the epithelial genes (SERPINB5 and LTF) modified cell motility in vitro, in accordance with a possible causal role in metastasis. Our results show that breast cancer metastases are molecularly distinct from their primary tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32.

    Article  CAS  Google Scholar 

  • Beltran A, Parikh S, Liu Y, Cuevas BD, Johnson GL, Futscher BW et al. (2007). Re-activation of a dormant tumor suppressor gene maspin by designed transcription factors. Oncogene 26: 2791–2798.

    Article  CAS  Google Scholar 

  • Bezault J, Bhimani R, Wiprovnick J, Furmanski P . (1994). Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice. Cancer Res 54: 2310–2312.

    CAS  PubMed  Google Scholar 

  • Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M et al. (2006). Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res 66: 8147–8154.

    Article  CAS  Google Scholar 

  • Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. (2004). Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351: 2159–2169.

    Article  CAS  Google Scholar 

  • Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R et al. (1992). Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89: 3010–3014.

    Article  CAS  Google Scholar 

  • Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C et al. (2007). Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 103: 319–329.

    Article  CAS  Google Scholar 

  • Fidler IJ, Kripke ML . (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197: 893–895.

    Article  CAS  Google Scholar 

  • Gangnus R, Langer S, Breit E, Pantel K, Speicher MR . (2004). Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin Cancer Res 10: 3457–3464.

    Article  CAS  Google Scholar 

  • Gupta GP, Massague J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  Google Scholar 

  • Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446: 765–770.

    Article  CAS  Google Scholar 

  • Hao X, Sun B, Hu L, Lahdesmaki H, Dunmire V, Feng Y et al. (2004). Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 100: 1110–1122.

    Article  CAS  Google Scholar 

  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2: 289–300.

    Article  CAS  Google Scholar 

  • Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J et al. (2006). Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: 10292–10301.

    Article  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4: 844–847.

    Article  CAS  Google Scholar 

  • Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101: 4966–4971.

    Article  CAS  Google Scholar 

  • Lamelas ML, Vazquez J, Enguita MI, Rodriguez JC, Gonzalez LO, Merino AM et al. (2000). Apolipoprotein D expression in metastasic lymph nodes of breast cancer. Int J Surg Invest 2: 285–293.

    CAS  Google Scholar 

  • Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL et al. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446: 690–694.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D et al. (2007). Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104: 6740–6745.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005a). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  Google Scholar 

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al. (2005b). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115: 44–55.

    Article  CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  CAS  Google Scholar 

  • Nguyen DX, Massague J . (2007). Genetic determinants of cancer metastasis. Nat Rev Genet 8: 341–352.

    Article  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES, Golub TR . (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet 33: 49–54.

    Article  CAS  Google Scholar 

  • Reddy KB, McGowen R, Schuger L, Visscher D, Sheng S . (2001). Maspin expression inversely correlates with breast tumor progression in MMTV/TGF-alpha transgenic mouse model. Oncogene 20: 6538–6543.

    Article  CAS  Google Scholar 

  • Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B . (2003). Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 100: 9482–9487.

    Article  CAS  Google Scholar 

  • Schedin P, Elias A . (2004). Multistep tumorigenesis and the microenvironment. Breast Cancer Res 6: 93–101.

    Article  CAS  Google Scholar 

  • Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al. (2003). From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100: 7737–7742.

    Article  CAS  Google Scholar 

  • Shi HY, Zhang W, Liang R, Abraham S, Kittrell FS, Medina D et al. (2001). Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Res 61: 6945–6951.

    CAS  PubMed  Google Scholar 

  • Suzuki M, Tarin D . (2007). Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol 1: 172–180.

    Article  Google Scholar 

  • Ushida Y, Sekine K, Kuhara T, Takasuka N, Iigo M, Tsuda H . (1998). Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc(Min) mouse. Cancer Lett 134: 141–145.

    Article  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.

    Article  CAS  Google Scholar 

  • Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van’t Veer LJ . (2003). Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100: 15901–15905.

    Article  CAS  Google Scholar 

  • Weigelt B, Wessels LF, Bosma AJ, Glas AM, Nuyten DS, He YD et al. (2005). No common denominator for breast cancer lymph node metastasis. Br J Cancer 93: 924–932.

    Article  CAS  Google Scholar 

  • Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M et al. (2002). Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2: 485–495.

    Article  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  Google Scholar 

  • Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S et al. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263: 526–529.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the microarray, DNA sequencing and Q-PCR and molecular pathology facilities at the IFOM-IEO-Campus; Silvia Veneroni for metastatic sample selection; Joan Massaguè and Don Nguyen for the 4175 cell line and for helpful discussions; Giorgio Scita and Pascale Romano for helpful discussions and for critically reading the manuscript. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) to PPDF, MAP and SP; CNR-MIUR to PPDF and MAP, Italian Ministry of Health to PPDF and SP; FIRB-MIUR to PPDF and MAP; the European Community (FP6) to MAP and PPDF; The Cariplo, Ferrari and Monzino Foundations to PPDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Di Fiore.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecchi, M., Confalonieri, S., Nuciforo, P. et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene 27, 2148–2158 (2008). https://doi.org/10.1038/sj.onc.1210858

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210858

Keywords

This article is cited by

Search

Quick links