Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts

Abstract

Virus integration into the host genome is a characteristic step during cervical carcinogenesis. Experimental data provide evidence that integration could result in increased levels of oncogene (E6/E7) transcripts. This is the first study in which the level of viral transcripts is correlated to the physical state of the viral genome in cervical intraepithelial neoplasia (CIN) and cervical carcinomas (CxCa). Using the APOT-assay integrate-derived transcripts only were detected in 3/28 (11%) CIN and in 28/55 (51%) carcinomas, respectively. The remaining biopsies contained either episome-derived transcripts only or both mRNA species. SybrGreen real time reverse transcriptase–PCR assays were used to quantify viral gene expression for (i) all transcripts initiated from p97, (ii) full-length E6, (iii) E6*I and (iv) E5 transcripts. E6/E7 transcript levels showed a broad distribution but similar median values irrespective of histopathological grading and physical state of the viral genome. Biopsies with integrate-derived transcripts only generally lacked E5-specific mRNA. Our data do not support the hypothesis that HPV integration invariably results in high levels of oncogene transcripts. Instead, constitutive expression of oncogene transcripts rather than the level of expression appears to be decisive for transformation and the maintenance of the malignant phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alazawi W, Pett M, Arch B, Scott L, Freeman T, Stanley MA et al. (2002). Changes in cervical keratinocyte gene expression associated with integration of human papillomavirus 16. Cancer Res 62: 6959–6965.

    CAS  PubMed  Google Scholar 

  • Andersson S, Hansson B, Norman I, Gaberi V, Mints M, Hjerpe A et al. (2006). Expression of E6/E7 mRNA from ‘high risk’ human papillomavirus in relation to CIN grade, viral load and p16INK4a. Int J Oncol 29: 705–711.

    CAS  PubMed  Google Scholar 

  • Arends MJ, Buckley CH, Wells M . (1998). Aetiology, pathogenesis, and pathology of cervical neoplasia. J Clin Pathol 51: 96–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM . (1987). Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61: 962–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Marco L, Gillio-Tos A, Bonello L, Ghisetti V, Ronco G, Merletti F . (2007). Detection of human papillomavirus type 16 integration in pre-neoplastic cervical lesions and confirmation by DIPS-PCR and sequencing. J Clin Virol 38: 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al. (2000). The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97: 10002–10007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duensing S, Munger K . (2004). Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Durst M, Dzarlieva-Petrusevska RT, Boukamp P, Fusenig NE, Gissmann L . (1987). Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1: 251–256.

    CAS  PubMed  Google Scholar 

  • Durst M, Glitz D, Schneider A, zur Hausen H . (1992). Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189: 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Durst M, Seagon S, Wanschura S, zur Hausen H, Bullerdiek J . (1995). Malignant progression of an HPV16-immortalized human keratinocyte cell line (HPKIA) in vitro. Cancer Genet Cytogenet 85: 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Falcinelli C, van Belkum A, Schrauwen L, Seldenrijk K, Quint WG . (1993). Absence of human papillomavirus type 16 E6 transcripts in HPV 16-infected, cytologically normal cervical scrapings. J Med Virol 40: 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA . (1997). Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11: 2090–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C . (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25: 386–401.

    Article  CAS  PubMed  Google Scholar 

  • Hopman AH, Kamps MA, Smedts F, Speel EJ, Herrington CS, Ramaekers FC . (2005). HPV in situ hybridization: impact of different protocols on the detection of integrated HPV. Int J Cancer 115: 419–428.

    Article  CAS  PubMed  Google Scholar 

  • IARC. (1995). Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 64: 1–378.

    Google Scholar 

  • Itoshima T, Fujiwara T, Waku T, Shao J, Kataoka M, Yarbrough WG et al. (2000). Induction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type p53 and E2F-1 genes: involvement of p53 accumulation via ARF-mediated MDM2 down-regulation. Clin Cancer Res 6: 2851–2859.

    CAS  PubMed  Google Scholar 

  • Jacobs MV, Snijders PJ, van den Brule AJ, Helmerhorst TJ, Meijer CJ, Walboomers JM . (1997). A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol 35: 791–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon S, Allen-Hoffmann BL, Lambert PF . (1995). Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69: 2989–2997.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon S, Lambert PF . (1995). Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci USA 92: 1654–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaes R, Woerner SM, Ridder R, Wentzensen N, Duerst M, Schneider A et al. (1999). Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res 59: 6132–6136.

    CAS  PubMed  Google Scholar 

  • Luft F, Klaes R, Nees M, Durst M, Heilmann V, Melsheimer P et al. (2001). Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells. Int J Cancer 92: 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Melsheimer P, Vinokurova S, Wentzensen N, Bastert G, von Knebel Doeberitz M . (2004). DNA aneuploidy and integration of human papillomavirus type 16 e6/e7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri. Clin Cancer Res 10: 3059–3063.

    Article  CAS  PubMed  Google Scholar 

  • Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T et al. (2003). Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 77: 10186–10201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molden T, Kraus I, Karlsen F, Skomedal H, Nygard JF, Hagmar B . (2005). Comparison of human papillomavirus messenger RNA and DNA detection: a cross-sectional study of 4136 women >30 years of age with a 2-year follow-up of high-grade squamous intraepithelial lesion. Cancer Epidemiol Biomarkers Prev 14: 367–372.

    Article  CAS  PubMed  Google Scholar 

  • Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M et al. (2004). Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78: 11451–11460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M et al. (2001). Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20: 7888–7898.

    Article  CAS  PubMed  Google Scholar 

  • Munoz N, Bosch FX . (1992). HPV and cervical neoplasia: review of case–control and cohort studies. IARC Sci Publ, 251–261.

  • Nakagawa S, Yoshikawa H, Yasugi T, Kimura M, Kawana K, Matsumoto K et al. (2000). Ubiquitous presence of E6 and E7 transcripts in human papillomavirus-positive cervical carcinomas regardless of its type. J Med Virol 62: 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Ostor AG . (1993). Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 12: 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Peitsaro P, Johansson B, Syrjanen S . (2002). Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol 40: 886–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pett MR, Alazawi WO, Roberts I, Dowen S, Smith DI, Stanley MA et al. (2004). Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res 64: 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  • Riethdorf S, Riethdorf L, Schulz G, Ikenberg H, Janicke F, Loning T et al. (2001). Relationship between telomerase activation and HPV 16/18 oncogene expression in squamous intraepithelial lesions and squamous cell carcinomas of the uterine cervix. Int J Gynecol Pathol 20: 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Romanczuk H, Howley PM . (1992). Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci USA 89: 3159–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosty C, Sheffer M, Tsafrir D, Stransky N, Tsafrir I, Peter M et al. (2005). Identification of a proliferation gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma. Oncogene 24: 7094–7104.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Sedman SA, Barbosa MS, Vass WC, Hubbert NL, Haas JA, Lowy DR et al. (1991). The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J Virol 65: 4860–4866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solinas-Toldo S, Durst M, Lichter P . (1997). Specific chromosomal imbalances in human papillomavirus-transfected cells during progression toward immortality. Proc Natl Acad Sci USA 94: 3854–3859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotlar K, Stubner A, Diemer D, Menton S, Menton M, Dietz K et al. (2004). Detection of high-risk human papillomavirus E6 and E7 oncogene transcripts in cervical scrapes by nested RT-polymerase chain reaction. J Med Virol 74: 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Van Tine BA, Kappes JC, Banerjee NS, Knops J, Lai L, Steenbergen RD et al. (2004). Clonal selection for transcriptionally active viral oncogenes during progression to cancer. J Virol 78: 11172–11186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Knebel Doeberitz M, Bauknecht T, Bartsch D, zur Hausen H . (1991). Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells. Proc Natl Acad Sci USA 88: 1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wentzensen N, Vinokurova S, von Knebel Doeberitz M . (2004). Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64: 3878–3884.

    Article  CAS  PubMed  Google Scholar 

  • Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P . (1996). Inactivation of the CDK inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13: 2323–2330.

    CAS  PubMed  Google Scholar 

  • zur Hausen H . (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Dürst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häfner, N., Driesch, C., Gajda, M. et al. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene 27, 1610–1617 (2008). https://doi.org/10.1038/sj.onc.1210791

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210791

Keywords

This article is cited by

Search

Quick links