Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional control of erythropoiesis: emerging mechanisms and principles

Abstract

Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allfrey V, Faulkner RM, Mirsky AE . (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KP, Crable SC, Lingrel JB . (2000). The GATA–E-box motif in the EKLF promoter is required for in vivo expression. Blood 95: 1652–1655.

    CAS  PubMed  Google Scholar 

  • Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH . (1993a). Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362: 722–728.

    Article  CAS  PubMed  Google Scholar 

  • Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Orkin SH . (1993b). The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci U SA 90: 11488–11492.

    Article  CAS  Google Scholar 

  • Anguita E, Hughes J, Heyworth C, Blobel GA, Wood WG, Higgs DR . (2004). Globin gene activation during hematopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J 23: 2841–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aplan PD, Begley CG, Bertness V, Nussmeier M, Ezquerra A, Coligan J et al. (1990a). The SCL gene is formed from a transcriptionally complex locus. Mol Cell Biol 10: 6426–6435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR . (1990b). Disruption of the human SCL locus by ‘illegitimate’ V–(D)–J recombinase activity. Science 250: 1426–1429.

    Article  CAS  PubMed  Google Scholar 

  • Archer TK, Cordingley MG, Wolford RG, Hager GL . (1991). Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol 11: 688–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M et al. (1994). Activation of cAMP and mitogen responsive genes relies on a common factor. Nature 370: 226–229.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JA, Bieker JJ, Emerson BM . (1998). A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95: 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Ayer DE . (1999). Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9: 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Bank A . (2006). Regulation of human fetal hemoglobin: new players, new complexities. Blood 107: 435–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bean TL, Ney PA . (1997). Multiple regions of p45 NF-E2 are required for beta-globin gene expression in erythroid cells. Nucleic Acids Res 25: 2509–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J et al. (1989a). Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 86: 2031–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR . (1989b). The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 86: 10128–10132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Visvader J, Green AR, Aplan PD, Metcalf D, Kirsch IR et al. (1991). Molecular cloning and chromosomal localization of the murine homolog of the human helix–loop–helix gene SCL. Proc Natl Acad Sci USA 88: 869–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belakavadi M, Fondell JD . (2006). Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol 156: 23–43.

    Article  CAS  PubMed  Google Scholar 

  • Berger SL . (2007). The complex language of chromatin regulation during transcription. Nature 447: 407–412.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES . (2007). The mammalian epigenome. Cell 128: 669–681.

    Article  CAS  PubMed  Google Scholar 

  • Bieker JJ . (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276: 34355–34358.

    Article  CAS  PubMed  Google Scholar 

  • Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH . (1998). CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA 95: 2061–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourquin JP, Subramanian A, Langebrake C, Reinhardt D, Bernard O, Ballerini P et al. (2006). Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci USA 103: 3339–3344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyes J, Byfield P, Nakatani Y, Ogryzko V . (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598.

    Article  CAS  PubMed  Google Scholar 

  • Brand M, Ranish JA, Kummer NT, Hamilton J, Igarashi K, Francastel C et al. (2004). Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 11: 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Bresnick EH, Johnson KD, Kim S-I, Im H . (2006). Establishment and regulation of chromatin domains: mechanistic insights from studies of hemoglobin synthesis. Prog Nucl Acids Res Mol Biol 81: 435–471.

    Article  CAS  Google Scholar 

  • Bresnick EH, Martowicz ML, Pal S, Johnson KD . (2005). Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol 205: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Pattison S, van Ree J, Coghill E, Perkins A, Jane SM et al. (2002). Distinct domains of erythroid Kruppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 22: 161–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulger M, Schubeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC et al. (2003). A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse beta-globin locus. Mol Cell Biol 23: 5234–5244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman SJ, Gebuhr TC, Magnuson T . (2005). A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF complexes in beta-globin expression and erythroid development. Genes Dev 19: 2849–2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman SJ, Gebuhr TC, Yee D, La Mantia C, Nicholson J, Gilliam A et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  • Cantor AB, Orkin SH . (2005). Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. Sem Cell Devel Biol 16: 117–128.

    Article  CAS  Google Scholar 

  • Cantor AB, Katz SG, Orkin SH . (2002). Distinct domains of the GATA-1 cofactor FOG-1 differentially influence erythroid versus megakaryocytic maturation. Mol Cell Biol 22: 4268–4279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P . (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet 32: 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Casteel D, Suhasini M, Gudi T, Naima R, Pilz RB . (1998). Regulation of the erythroid transcription factor NF-E2 by cyclic adenosine monophosphate-dependent protein kinase. Blood 91: 3193–3201.

    CAS  PubMed  Google Scholar 

  • Caterina JJ, Donze D, Sun CW, Ciavatta DJ, Townes TM . (1994). Cloning and functional characterization of LCR-F1: a bZIP transcription factor that activates erythroid-specific, human globin gene expression. Nucleic Acids Res 22: 2383–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JY, Han XL, Kan YW . (1993). Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci USA 90: 11371–13375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan K, Lu R, Chang JC, Kan YW . (1996). NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 93: 13943–13948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WY, Follows GA, Lacaud G, Pimanda JE, Landry JR, Kinston S et al. (2007). The paralogous hematopoietic regulators Lyl1 and SCL are co-regulated by Ets and GATA factors yet Lyl1 cannot rescue the early SCL−/− phenotype. Blood 109: 1908–1916.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Mendell JT . (2007). The roles of microRNAs in vertebrate physiology and human disease. Ann Rev Genomics Hum Genet e-pub ahead of print.

  • Charron F, Nemer M . (1999). GATA transcription factors and cardiac development. Semin Cell Dev Biol 10: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Segal D, Hukriede NA, Podtelejnikov AV, Bayarsaihan D, Kennison JA et al. (2002). Ssdp proteins interact with the LIM-domain-binding protein Ldb1 to regulate development. Proc Natl Acad Sci USA 99: 14320–14325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yang CY, Tsan JT, Xia Y, Ragab AH, Peiper SC et al. (1990). Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia. J Exp Med 172: 1403–1408.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Bieker JJ . (2001). Unanticipated repression function linked to erythroid Kruppel-like factor. Mol Cell Biol 21: 3118–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Bieker JJ . (2004). Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol 24: 10416–10424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E et al. (1998). A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 18: 5355–5363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH . (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859.

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Whiteley M, Felsenfeld G . (1993). A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Chung YS, Zhang WJ, Arentson E, Kingsley PD, Palis J, Choi K . (2002). Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 129: 5511–5520.

    Article  CAS  PubMed  Google Scholar 

  • Coghill E, Eccleston S, Fox V, Cerruti L, Brown C, Cunningham J et al. (2001). Erythroid Kruppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97: 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  • Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD et al. (2002). Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 277: 3585–3592.

    Article  CAS  PubMed  Google Scholar 

  • Crispino JD . (2005). GATA-1 in normal and malignant hematopoiesis. Semin Cell Dev Biol 16: 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Crispino JD, Lodish MB, MacKay JP, Orkin SH . (1999). Use of altered specificity mutants to probe a specific protein–protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell 3: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD et al. (2001). Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15: 839–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossley M, Orkin SH . (1994). Phosphorylation of the erythroid transcription factor GATA-1. J Biol Chem 269: 16589–16596.

    CAS  PubMed  Google Scholar 

  • Daftari P, Gavva NR, Shen CK . (1999). Distinction between AP1 and NF-E2 factor-binding at specific chromatin regions in mammalian cells. Oncogene 18: 5482–5486.

    Article  CAS  PubMed  Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN . (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7: 461–473.

    Article  CAS  PubMed  Google Scholar 

  • Dean A . (2006). On a chromosome far, far away: LCRs and gene expression. Trends Genet 22: 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM . (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Donze D, Townes TM, Bieker JJ . (1995). Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. J Biol Chem 270: 1955–1959.

    Article  CAS  PubMed  Google Scholar 

  • Drissen R, Palstra RJ, Gillemans N, Splinter E, Grosveld F, Philipsen S et al. (2004). The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev 18: 2485–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H et al. (2005). The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 25: 5205–5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL et al. (2003). Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17: 380–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery DW, Yannaki E, Tubb J, Nishino T, Li Q, Stamatoyannopoulos G . (2002). Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo. Blood 100: 2012–2019.

    Article  CAS  PubMed  Google Scholar 

  • Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . (2000). A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 97: 9150–9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans T, Felsenfeld G . (1989). The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58: 877–885.

    Article  CAS  PubMed  Google Scholar 

  • Evans T, Reitman M, Felsenfeld G . (1988). An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci USA 85: 5976–5980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenfeld G, Groudine M . (2003). Controlling the double helix. Nature 421: 448–453.

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD . (2003). Histone and chromatin crosstalk. Curr Opin Cell Biol 15: 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M . (1987). Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res 15: 10159–10177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg EC, Bresnick EH . (2001). Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 23: 820–830.

    Article  CAS  PubMed  Google Scholar 

  • Forsberg EC, Downs KM, Bresnick EH . (2000a). Direct interaction of NF-E2 with hypersensitive site 2 of the beta-globin locus control region in living cells. Blood 96: 334–339.

    CAS  PubMed  Google Scholar 

  • Forsberg EC, Downs KM, Christensen HM, Im H, Nuzzi PA, Bresnick EH . (2000b). Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci USA 97: 14494–14499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg EC, Johnson K, Zaboikina TN, Mosser EA, Bresnick EH . (1999a). Requirement of an E1A-sensitive coactivator for long-range transactivation by the beta-globin locus control region. J Biol Chem 274: 26850–26859.

    Article  CAS  PubMed  Google Scholar 

  • Forsberg EC, Zaboikina TN, Versaw WK, Ahn NG, Bresnick EH . (1999b). Enhancement of beta-globin locus control region-mediated transactivation by mitogen-activated protein kinases through stochastic and graded mechanisms. Mol Cell Biol 19: 5565–5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox AH, Liew C, Holmes M, Kowalski K, MacKay JP, Crossley M . (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J 18: 2812–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara Y, Chang AN, Williams AM, Orkin SH . (2004). Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood 103: 583–585.

    Article  CAS  PubMed  Google Scholar 

  • Garriga-Canut M, Orkin SH . (2004). Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J Biol Chem 279: 23597–23605.

    Article  CAS  PubMed  Google Scholar 

  • Gering M, Yamada Y, Rabbitts TH, Patient RK . (2003). Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 130: 6187–6199.

    Article  CAS  PubMed  Google Scholar 

  • Gillemans N, Tewari R, Lindeboom F, Rottier R, de Wit T, Wijgerde M et al. (1998). Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta-globin locus control region in vivo. Genes Dev 12: 2863–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilliland DG, Jordan CT, Felix CA . (2004). The molecular basis of leukemia. Hematology Am Soc Hematol Educ Program, 80–97.

  • Goldman PS, Tran VK, Goodman RH . (1997). The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog Horm Res 52: 103–119.

    CAS  PubMed  Google Scholar 

  • Gottgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M et al. (2002). Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 21: 3039–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH . (2003). GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 100: 8811–8816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass JA, Jing H, Kim S-I, Martowicz ML, Pal S, Blobel GA et al. (2006). Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol Cell Biol 26: 7056–7067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ . (1999). GATA-1 and erythropoietin cooperate to promoter erythroid cell survival by regulating bcl-xl expression. Blood 94: 87–96.

    CAS  PubMed  Google Scholar 

  • Grewal SI, Elgin SC . (2007). Transcription and RNA interference in the formation of heterochromatin. Nature 447: 399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P . (2000). Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 5: 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G . (1987). Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51: 975–985.

    Article  CAS  PubMed  Google Scholar 

  • Hager GL, Archer TK, Fragoso G, Bresnick EH, Tsukagoshi Y, John S et al. (1993). Influence of chromatin structure on the binding of transcription factors to DNA. Cold Spring Harb Symp Quant Biol 58: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Hassan AH, Neely KE, Workman JL . (2001). Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817–827.

    Article  CAS  PubMed  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C . (1988). A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7: 1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A et al. (2006). A global role for EKLF in definitive and primitive erythropoiesis. Blood 107: 3359–3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong W, Kim AY, Ky S, Rakowski C, Seo SB, Chakravarti D et al. (2002). Inhibition of CBP-mediated protein acetylation by the Ets family oncoprotein PU.1. Mol Cell Biol 22: 3729–3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C et al. (2005). FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 24: 67–78.

    Article  CAS  Google Scholar 

  • Hromas R, Orazi A, Neiman RS, Maki R, Van Beveran C, Moore J et al. (1993). Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82: 2998–3004.

    CAS  PubMed  Google Scholar 

  • Huang S, Brandt SJ . (2000). mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol Cell Biol 20: 2248–2259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Qiu Y, Shi Y, Xu Z, Brandt SJ . (2000). P/CAF-mediated acetylation regulates the function of the basic helix–loop–helix transcription factor TAL1/SCL. EMBO J 19: 6792–6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Qiu Y, Stein RW, Brandt SJ . (1999). p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene 18: 4958–4967.

    Article  CAS  PubMed  Google Scholar 

  • Huebert DJ, Kamal M, O’Donovan A, Bernstein BE . (2006). Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 40: 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA . (2001). Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J Biol Chem 276: 10715–10721.

    Article  CAS  PubMed  Google Scholar 

  • Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA . (1999). CREB-binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol Cell Biol 19: 3496–3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Hoshino H, Muto A, Suwabe N, Nishikawa S, Nakauchi H et al. (1998). Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for beta-globin locus control region complex. J Biol Chem 273: 11783–11790.

    Article  CAS  PubMed  Google Scholar 

  • Im H, Grass JA, Johnson KD, Boyer ME, Wu J, Bresnick EH . (2004). Measurement of protein–DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol Biol 284: 129–146.

    CAS  PubMed  Google Scholar 

  • Im H, Grass JA, Johnson KD, Kim S-I, Boyer ME, Imbalzano AN et al. (2005). Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc Natl Acad Sci USA 102: 17065–17070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Yuan CX, Okano HJ, Darnell RB, Roeder RG . (2000). Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell 5: 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R . (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288: 1422–1425.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KD, Bresnick EH . (2002). Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26: 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KD, Boyer ME, Kim S-I, Kang SY, Wickrema A, Cantor AB et al. (2007). Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 109: 5230–5233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KD, Christensen HM, Zhao B, Bresnick EH . (2001). Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Mol Cell 8: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KD, Grass JA, Im H, Park C, Choi K, Bresnick EH . (2003). Highly restricted localization of RNA polymerase II to the hypersensitive site cores of a tissue-specific locus control region. Mol Cell Biol 23: 6468–6493.

    Google Scholar 

  • Johnson KD, Grass JD, Boyer ME, Kiekhaefer CM, Blobel GA, Weiss MJ et al. (2002). Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain. Proc Natl Acad Sci USA 99: 11760–11765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KD, Kim S-I, Bresnick EH . (2006). Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression patterns. Proc Natl Acad Sci USA 103: 15939–15944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam S, McAlpine GS, Phelan ML, Kingston RE, Jone KA, Emerson BM . (2000). Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev 14: 2441–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadonaga JT . (2004). Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116: 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B et al. (1996). A CBP integrator complex mediates transcriptional regulation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowiwtz M et al. (2000). TAZ: a novel transcriptional coactivator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19: 6778–6791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapranov P, Willingham AT, Gingeras TR . (2007). Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8: 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A et al. (2006). Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 26: 789–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz SG, Cantor AB, Orkin SH . (2002). Interaction between FOG-1 and the corepressor C-terminal bindng protein is dispensible for normal erythropoiesis in vivo. Mol Cell Biol 22: 3121–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushansky K . (2006). Lineage-specific hematopoietic growth factors. N Engl J Med 354: 2034–2045.

    Article  CAS  PubMed  Google Scholar 

  • Khandekar M, Brandt W, Zhou Y, Dagenais S, Glover TW, Suzuki N et al. (2007). A Gata2 intronic enhancer confers its pan-endothelia-specific regulation. Development 134: 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  • Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR . (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366: 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Kiekhaefer CM, Grass JA, Johnson KD, Boyer ME, Bresnick EH . (2002). Hematopoietic activators establish an overlapping pattern of histone acetylation and methylation within a tissue-specific chromatin domain. Proc Natl Acad Sci USA 99: 14309–14314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiekhaefer CM, Grass JD, Bresnick EH . (2004). WW domain binding motif within the activation domain of the hematopoietic activator p45/NF-E2 is essential for establishment of a tissue-specific histone modification pattern. J Biol Chem 279: 7456–7461.

    Article  CAS  PubMed  Google Scholar 

  • Kim S-I, Bultman SJ, Jing H, Blobel GA, Bresnick EB . (2007). Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol Cell Biol 27: 4551–4565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirmizis A, Farnham PJ . (2004). Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med 229: 705–721.

    Article  CAS  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA . (1990). The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Ko LJ, Engel JD . (1993). DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 13: 4011–4022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong S, Bohl D, Li C, Tuan D . (1997). Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol 17: 3955–3965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooren J, Palstra RJ, Klous P, Splinter E, von Lindern M, Grosveld F et al. (2007). Beta-globin active chromatin hub formation in differentiating erythroid cells and in p45 NF-E2 knockout mice. J Biol Chem 282: 16544–16552.

    Article  CAS  PubMed  Google Scholar 

  • Kornberg RD . (2005). Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30: 235–239.

    Article  CAS  PubMed  Google Scholar 

  • Kotkow KJ, Orkin SH . (1995). Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol 15: 4640–4647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Krogan NJ, Dover J, Wood J, Schneider J, Heidt J, Boateng MA et al. (2003a). The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11: 721–729.

    Article  CAS  PubMed  Google Scholar 

  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V et al. (2003b). Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 12: 4207–4218.

    Article  CAS  Google Scholar 

  • Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM et al. (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14: 272–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlil R, Lecuyer E, Herblot S, Hoang T . (2004). SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 24: 1439–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamonica JM, Vakoc CR, Blobel GA . (2006). Acetylation of GATA-1 is required for chromatin occupancy. Blood 108: 3736–3738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landles C, Chalk S, Steel JH, Rosewell I, Spencer-Dene B, Lalani el N et al. (2003). The thyroid hormone receptor-associated protein TRAP220 is required at distinct embryonic stages in placental, cardiac, and hepatic development. Mol Endocrinol 17: 2418–2435.

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Workman JL . (2007). Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Romeo PH . (1993). GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol 13: 668–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letting DL, Chen YY, Rakowski C, Reedy S, Blobel GA . (2004). Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci USA 101: 476–481.

    Article  CAS  PubMed  Google Scholar 

  • Letting DL, Rakowski C, Weiss MJ, Blobel GA . (2003). Formation of a tissue-specific histone acetylation pattern by the hematopoietic transcription factor GATA-1. Mol Cell Biol 23: 1334–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levings PP, Zhou Z, Vieira KF, Crusselle-Davis VJ, Bungert J . (2006). Recruitment of transcription complexes to the beta-globin locus control region and transcription of hypersensitive site 3 prior to erythroid differentiation of murine embryonic stem cells. FEBS J 273: 746–755.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Liew CW, Rand KD, Simpson RJ, Yung WW, Mansfield RE, Crossley M et al. (2006). Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1. J Biol Chem 281: 28296–28306.

    Article  CAS  PubMed  Google Scholar 

  • Liew CK, Simpson RJY, Kwan AHY, Crofts LA, Loughlin FE, Matthews JM et al. (2005). Zinc fingers as protein recognition motifs: structural basis for the GATA-1/Friend of GATA interaction. Proc Natl Acad Sci USA 102: 583–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AC, Roche AE, Wilk J, Svensson EC . (2004). The N termini of Friend of GATA (FOG) proteins define a novel transcriptional repression motif and a superfamilyl of transcriptional repressors. J Biol Chem 279: 55017–55023.

    Article  CAS  PubMed  Google Scholar 

  • Ling J, Ainol L, Zhang L, Yu X, Pi W, Tuan D . (2004). HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem 279: 51704–51713.

    Article  CAS  PubMed  Google Scholar 

  • Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G . (2001). Correlation between histone lysine methylation and developmental changes at the chicken {beta}-globin locus. Science 9: 2453–2455.

    Article  Google Scholar 

  • Lopez RA, Schoetz S, DeAngelis K, O’Neill D, Bank A . (2002). Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci USA 99: 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SJ, Rowan S, Bani MR, Ben-David Y . (1994). Retroviral integration within the Fli-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci USA 91: 8398–8402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugus JJ, Chung YS, Mills JC, Kim SI, Grass JA, Kyba M et al. (2007). GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 134: 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan MC, Narlikar GJ, Boyapaty G, Kingston RE, Weissman SM . (2005). Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1, and SWI/SNF form a chromatin remodeling complex at the beta-globin locus control region. Proc Natl Acad Sci USA 102: 15012–15017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmorstein R . (2001). Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2: 422–432.

    Article  CAS  PubMed  Google Scholar 

  • Martin DI, Orkin SH . (1990). Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 4: 1886–1898.

    Article  CAS  PubMed  Google Scholar 

  • Martin F, van Deursen JM, Shivdasani RA, Jackson CW, Troutman AG, Ney PA . (1998). Erythroid maturation and globin gene expresion in mice with combined deficiency of NF-E2 and Nrf-2. Blood 91: 3459–3466.

    CAS  PubMed  Google Scholar 

  • Martowicz ML, Grass JA, Boyer ME, Guend H, Bresnick EH . (2005). Dynamic GATA factor interplay at a multi-component regulatory region of the GATA-2 locus. J Biol Chem 280: 1724–1732.

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Montminy M . (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599–609.

    Article  CAS  PubMed  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al. (1996). Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15: 5647–5658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier N, Krpic S, Rodriguez P, Strouboulis J, Monti M, Krijgsveld J et al. (2006). Novel binding partners of Ldb1 are required for haematopoietic development. Development 133: 4913–4923.

    Article  CAS  PubMed  Google Scholar 

  • Merika M, Orkin SH . (1993). DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13: 3999–4010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merika M, Orkin SH . (1995). Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 15: 2437–2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignotte V, Navarro S, Eleouet JF, Zon LI, Romeo PH . (1990). The extinction of erythroid genes after tetradecanoylphorbol acetate treatment of erythroleukemic cells correlates with down-regulation of the tissue-specific factors NF-E1 and NF-E2. J Biol Chem 265: 22090–22092.

    CAS  PubMed  Google Scholar 

  • Mikkola HK, Klintman J, Yang H, Hock H, Schlaeger TM, Fujiwara Y et al. (2003). Hematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukemia SCL/tal-1 gene. Nature 421: 547–551.

    Article  CAS  PubMed  Google Scholar 

  • Mikkola HK, Orkin SH . (2006). The journey of developing hematopoietic stem cells. Development 133: 3733–3744.

    Article  CAS  PubMed  Google Scholar 

  • Miller IJ, Bieker JJ . (1993). A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 13: 2776–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minegishi N, Ohta J, Yamagiwa H, Suzuki N, Kawauchi S, Zhou Y et al. (1999). The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood 93: 4196–4207.

    CAS  PubMed  Google Scholar 

  • Moi P, Kan YW . (1990). Synergistic enhancement of globin gene expression by activator protein-1-like proteins. Proc Natl Acad Sci USA 87: 9000–9004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin JD . (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275: 38949–38952.

    Article  CAS  PubMed  Google Scholar 

  • Moon AM, Ley TJ . (1991). Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. Blood 77: 2272–2284.

    CAS  PubMed  Google Scholar 

  • Mosser EA, Kasanov JD, Forsberg EC, Kay BK, Ney PA, Bresnick EH . (1998). Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains. Biochemistry 37: 13686–13695.

    Article  CAS  PubMed  Google Scholar 

  • Munugalavadla V, Dore LC, Tan BL, Hong L, Vishnu M, Weiss MJ et al. (2005). Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 25: 6747–6759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narlikar GJ, Fan H-Y, Kingston RE . (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487.

    Article  CAS  PubMed  Google Scholar 

  • Nerlov C, Querfurth E, Kulessa H, Graf T . (2000). GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95: 2543–2551.

    CAS  PubMed  Google Scholar 

  • Ney PA, Andrews NC, Jane SM, Safer B, Purucker ME, Weremowicz S et al. (1993). Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner. Mol Cell Biol 13: 5604–5612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ney PA, Sorrentino BP, Lowrey CH, Nienhuis AW . (1990a). Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acids Res 18: 6011–6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ney PA, Sorrentino BP, McDonagh KT, Nienhuis AW . (1990b). Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev 4: 993–1006.

    Article  CAS  PubMed  Google Scholar 

  • Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM et al. (2000). Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA-1. Nat Genet 24: 266–270.

    Article  CAS  PubMed  Google Scholar 

  • Nilson DG, Sabatino DE, Bodine DM, Gallagher PG . (2006). Major erythrocyte membrane protein genes in EKLF-deficient mice. Exp Hematol 34: 705–712.

    Article  CAS  PubMed  Google Scholar 

  • Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F . (1995). Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375: 316–318.

    Article  CAS  PubMed  Google Scholar 

  • Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y et al. (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 93: 2771–2779.

    CAS  PubMed  Google Scholar 

  • O’Neill D, Yang J, Erdjument-Bromage H, Bornschlegel K, Tempst P, Bank A . (1999). Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. Proc Natl Acad Sci USA 96: 349–354.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill DW, Schoetz SS, Lopez RA, Castle M, Rabinowitz L, Shor E et al. (2000). An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol Cell Biol 20: 7572–7582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orlando V, Strutt H, Paro R . (1997). Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P et al. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19: 6141–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal S, Cantor AB, Johnson KD, Moran T, Boyer ME, Orkin SH et al. (2004a). Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci USA 101: 980–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal S, Nemeth MJ, Bodine DM, Miller JL, Svaren J, Thein SL et al. (2004b). Neurokinin-B transcription in erythroid cells: direct activation by the hematopoietic transcription factor GATA-1. J Biol Chem 279: 31348–31356.

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Wu J, Murray JK, Gellman SH, Wozniak MA, Keely PJ et al. (2006). An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis. J Cell Biol 174: 1047–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaille CM, Ekker SC et al. (2007). The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 109: 2389–2398.

    Article  CAS  PubMed  Google Scholar 

  • Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG . (2004). A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116: 511–526.

    Article  CAS  PubMed  Google Scholar 

  • Perkins AC, Gaensler KM, Orkin SH . (1996). Silencing of human fetal globin expression is impaired in the absence of the adult beta-globin gene activator protein EKLF. Proc Natl Acad Sci USA 93: 12267–12271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins AC, Sharpe AH, Orkin SH . (1995). Lethal beta-thalassaemia in mice lacking the erythroid CACCC- transcription factor EKLF. Nature 375: 318–322.

    Article  CAS  PubMed  Google Scholar 

  • Pevny L, Lin CS, D’Agati V, Simon MC, Orkin SH, Costantini F . (1995). Development of hematopoietic cells lacking transcription factor GATA-1. Development 121: 163–172.

    CAS  PubMed  Google Scholar 

  • Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D’Agati V et al. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349: 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Pilon AM, Nilson DG, Zhou D, Sangerman J, Townes TM, Bodine DM et al. (2006). Alterations in expression and chromatin configuation of the alpha hemoglobin-stabilizing protein gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol 26: 4368–4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pina B, Bruggemeier U, Beato M . (1990). Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60: 719–731.

    Article  CAS  PubMed  Google Scholar 

  • Porcher C, Liao EC, Fujiwara Y, Zon LI, Orkin SH . (1999). Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development 126: 4603–4615.

    CAS  PubMed  Google Scholar 

  • Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH . (1996). The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86: 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Prasad KS, Brandt SJ . (1997). Target-dependent effect of phosphorylation on the DNA binding activity of the TAL1/SCL oncoprotein. J Biol Chem 272: 11457–11462.

    Article  CAS  PubMed  Google Scholar 

  • Prasad KS, Jordan JE, Koury MJ, Bondurant MC, Brandt SJ . (1995). Erythropoietin stimulates transcription of the TAL1/SCL gene and phosphorylation of its protein products. J Biol Chem 270: 11603–11611.

    Article  CAS  PubMed  Google Scholar 

  • Puthenveetil G, Scholes J, Carbonnell D, Qureshi N, Xia P, Zeng L et al. (2004). Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 104: 3445–3453.

    Article  CAS  PubMed  Google Scholar 

  • Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM . (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 99: 14789–14794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R et al. (1998). DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93: 531–541.

    Article  CAS  PubMed  Google Scholar 

  • Reitman M, Felsenfeld G . (1988). Mutational analysis of the chicken beta-globin enhancer reveals two positive-acting domains. Proc Natl Acad Sci USA 85: 6267–6271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rekhtman N, Choe KS, Matushansky I, Murray S, Stopka T, Skoultchi AI . (2003). PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol 23: 7460–7474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rekhtman N, Radparvar F, Evans T, Skoultchi AI . (1999). Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13: 1398–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robb L, Lyons I, Li R, Hartley L, Kontgen F, Harvey RP et al. (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA 92: 7075–7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriquez P, Bonte E, Krijgsveld J, Kolodziej KE, Guyot B, Heck AJ et al. (2005). GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J 24: 2354–2366.

    Article  CAS  Google Scholar 

  • Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR . (2002). Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci USA 99: 16701–16706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooke HM, Orkin SH . (2006). Phosphorylation of Gata1 at serine residues 72, 142, and 310 is not essential for hematopoiesis in vivo. Blood 107: 3527–3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbauer F, Tenen DG . (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7: 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA et al. (2003). GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 23: 5031–5042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR . (2006). Chromatin remodeling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Sawado T, Halow J, Bender MA, Groudine M . (2003). The beta-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev 17: 1009–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawado T, Igarashi K, Groudine M . (2001). Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci USA 98: 10226–10231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleif R . (1992). DNA looping. Annu Rev Biochem 61: 199–223.

    Article  CAS  PubMed  Google Scholar 

  • Schuetze S, Paul R, Gliniak BC, Kabat D . (1992). Role of the PU.1 transcription factor in controlling differentiation of Friend erythroleukemia cells. Mol Cell Biol 12: 2967–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetze S, Stenberg PE, Kabat D . (1993). The Ets-related factor PU.1 immortalizes erythroblasts. Mol Cell Biol 13: 5670–5678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H . (1994). Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA, Mayer EL, Orkin SH . (1995a). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373: 432–434.

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA, Orkin SH . (1995). Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA 92: 8690–8694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ et al. (1995b). Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81: 695–704.

    Article  CAS  PubMed  Google Scholar 

  • Shyu YC, Lee TL, Ting CY, Wen SC, Hsieh LJ, Li YC et al. (2005). Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammalian beta-like globin locus. Mol Cell Biol 25: 10365–10378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon MC, Pevny L, Wiles MV, Keller G, Costantini F, Orkin SH . (1992). Rescue of erythroid development in gene targeted GATA-1-mouse embryonic stem cells. Nat Genet 1: 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Stopka T, Amanatullah DF, Papetti M, Skoultchi AI . (2005). PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 24: 3712–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpf M, Waskow C, Krotschel M, van Essen D, Rodriguez P, Zhang X et al. (2006). The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci USA 103: 18504–18509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson EC, Tufts RL, Polk CE, Leiden JM . (1999). Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci USA 96: 956–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szutorisz H, Canzonetta C, Georgiou A, Chow CM, Tora L, Dillon N . (2005a). Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol Cell Biol 25: 1804–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szutorisz H, Dillon N, Tora L . (2005b). The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 30: 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Tevosian SG, Deconinck AE, Cantor AB, Rieff HI, Fujiwara Y, Corfas G et al. (1999). FOG-2: a novel GATA-family cofactor related to multitype zinc-finger protein Friend of GATA-1 and U-shaped. Proc Natl Acad Sci USA 96: 950–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S et al. (2000). FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101: 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Tewari R, Gillemans N, Wijgerde M, Nuez B, von Lindern M, Grosveld F et al. (1998). Erythroid Kruppel-like factor (EKLF) is active in primitive and definitive erythroid cells and is required for the function of 5′HS3 of the beta-globin locus control region. EMBO J 17: 2334–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W . (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10: 1453–1475.

    Article  CAS  PubMed  Google Scholar 

  • Trainor CD, Omichinski JG, Vandergon TL, Gronenborn AM, Clore GM, Felsenfeld G . (1996). A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol 16: 2238–2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travers A . (1999). Chromatin modification by DNA tracking. Proc Natl Acad Sci USA 96: 13634–13637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M et al. (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Tsai F-Y, Orkin SH . (1997). Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89: 3636–3643.

    CAS  PubMed  Google Scholar 

  • Tsai SF, Martin DI, Zon LI, D’Andrea AD, Wong GG, Orkin SH . (1989). Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339: 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Tsang AP, Fujiwara Y, Hom DB, Orkin SH . (1998). Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev 12: 1176–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang AP, Visvader JE, Turner CA, Fujuwara Y, Yu C, Weiss MJ et al. (1997). FOG, a multitype zinc finger protein as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC . (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18: 4629–4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schutz G, Angel P . (1999). The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 147: 1365–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlmann T, Boeing S, Lehmbacher M, Meisterernst M . (2007). The VP16 activation domain establishes an active mediator lacking CDK8 in vivo. J Biol Chem 282: 2163–2173.

    Article  CAS  PubMed  Google Scholar 

  • Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M et al. (2005). Proximity among distant regulatory elements at the beta globin locus requires GATA-1 and FOG-1. Mol Cell 17: 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Versaw WK, Blank V, Andrews NM, Bresnick EH . (1998). Mitogen-activated protein kinases enhance long-range activation by the beta-globin locus control region. Proc Natl Acad Sci USA 95: 8756–8760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira KF, Levings PP, Hilll MA, Cruselle VJ, Kang SH, Engel JD et al. (2004). Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. J Biol Chem 279: 50350–50357.

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, McDevitt MA, Cantor AB, Katz SG, Fujiwara Y, Orkin SH . (1999). Different sequence requirements for expression in erythroid and megakaryocytic cells within a regulatory element upstream of the GATA-1 gene. Development 126: 2799–2811.

    CAS  PubMed  Google Scholar 

  • Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16: 3145–3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, Blobel GA . (2002). Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J 21: 5225–5234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, LeBeau MM et al. (2002). Acquired mutations in GATA-1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32: 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Weiss MJ, Keller G, Orkin SH . (1994). Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 8: 1184–1197.

    Article  CAS  PubMed  Google Scholar 

  • Weiss MJ, Orkin SH . (1995). Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA 92: 9623–9627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MJ, Yu C, Orkin SH . (1997). Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol 17: 1642–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC et al. (2004). Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104: 3136–3147.

    Article  CAS  PubMed  Google Scholar 

  • Wijgerde M, Gribnau J, Trimborn T, Nuez B, Philipsen S, Grosveld F et al. (1996). The role of EKLF in human beta-globin gene competition. Genes Dev 10: 2894–2902.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak RJ, Boyer ME, Grass JA, Lee Y-S, Bresnick EH . (2007). Context-dependent GATA factor function: combinatorial requirements for transcriptional control in hematopoietic and endothelial cells. J Biol Chem 282: 14665–14674.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ . (2003). Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein (Ldb1) in erythroid gene expression and differentiation. Mol Cell Biol 23: 7585–7599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Meng X, Cai Y, Koury MJ, Brandt SJ . (2006). Recruitment of the SWI/SNF protein Brg1 by a multiprotein complex effects transcriptional repression in murine erythroid progenitors. Biochem J 399: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Meng X, Cai Y, Liang H, Nagarajan L, Brandt SJ . (2007). Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. Genes Dev 21: 942–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y . (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional coactivator. EMBO J 18: 2551–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao T-P, Oh SP, Fuchs M, Zhou N-D, Ch’ng L-E, Newsome D et al. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Behre G, Pan J, Iwama A, Wara-aswapati N, Radomska HS et al. (1999a). Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 96: 8705–8710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang PJ, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU et al. (2000). PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96: 2641–2648.

    CAS  PubMed  Google Scholar 

  • Zhang W, Bieker JJ . (1998). Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA 95: 9855–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Kadam S, Emerson BM, Bieker JJ . (2001). Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI–SNF complex. Mol Cell Biol 21: 2413–2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . (1999b). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S . (2006). Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107: 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Pawlik KM, Ren J, Sun CW, Townes TM . (2006). Differential binding of erythroid Krupple-like factor to embryonic/fetal globin gene promoters during development. J Biol Chem 281: 16052–16057.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Qi C, Jia Y, Nye JS, Rao MS, Reddy JK . (2000). Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J Biol Chem 275: 14779–14782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Bresnick laboratory members for a critical reading of this review. We acknowledge support from NIH Grants DK50107 (EHB), DK55700 (EHB), DK68634 (EHB), and an American Heart Association Predoctoral Fellowship (S-I K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E H Bresnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SI., Bresnick, E. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26, 6777–6794 (2007). https://doi.org/10.1038/sj.onc.1210761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210761

Keywords

This article is cited by

Search

Quick links