Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Aberrant cytokine signaling in leukemia

Abstract

Abnormalities of cytokine and growth factor signaling pathways are characteristic of all forms of leukemia: lymphoid and myeloid, acute and chronic. In normal hematopoietic cells, cytokines provide the stimulus for proliferation, survival, self-renewal, differentiation and functional activation. In leukemic cells, these pathways are usurped to subserve critical parts of the malignant program. In this review, our current knowledge of leukemic cell cytokine signaling will be summarized, and some speculations on the significance and implications of these insights will be advanced. A better understanding of aberrant cytokine signaling in leukemia should provide additional targets for the rational therapy of these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Antonchuk J, Sauvageau G, Humphries RK . (2002). HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109: 39–45.

    CAS  PubMed  Google Scholar 

  • Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ et al. (2002). Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 347: 481–487.

    CAS  PubMed  Google Scholar 

  • Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL et al. (2004). Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 10: 849–857.

    CAS  PubMed  Google Scholar 

  • Baxter EJ, Hochhaus A, Bolufer P, Reiter A, Fernandez JM, Senent L et al. (2002). The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum Mol Genet 11: 1391–1397.

    CAS  PubMed  Google Scholar 

  • Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061.

    CAS  PubMed  Google Scholar 

  • Benekli M, Xia Z, Donohue KA, Ford LA, Pixley LA, Baer MR et al. (2002). Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival. Blood 99: 252–257.

    CAS  PubMed  Google Scholar 

  • Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2: 172–180.

    CAS  PubMed  Google Scholar 

  • Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. (2004). Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 101: 597–602.

    CAS  PubMed  Google Scholar 

  • Bunting KD, Bradley HL, Hawley TS, Moriggl R, Sorrentino BP, Ihle JN . (2002). Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood 99: 479–487.

    CAS  PubMed  Google Scholar 

  • Carlesso N, Frank DA, Griffin JD . (1996). Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  • Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11: 630–637.

    CAS  PubMed  Google Scholar 

  • Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. (2004). Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 113: 528–538.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Deangelo DJ, Kutok JL, Williams IR, Lee BH, Wadleigh M et al. (2004). PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA 101: 14479–14484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. (1997). Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16: 260–264.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. (2000). A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95: 1007–1013.

    CAS  PubMed  Google Scholar 

  • Cools J, DeAngelo DJ, Gotlib J, Stover EH, Lagare RD, Cottes J et al. (2003). A tyrosine kinase created by fusion of the PDGFA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348: 1201–1214.

    CAS  PubMed  Google Scholar 

  • Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . (2003). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17: 3029–3035.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX et al. (2004). Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24: 8037–8047.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daley GQ, Van Etten RA, Baltimore D . (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830.

    CAS  PubMed  Google Scholar 

  • De Keersmaecker K, Graux C, Odero MD, Mentens N, Somers R, Maertens J et al. (2005). Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood 105: 4849–4852.

    CAS  PubMed  Google Scholar 

  • Deininger M, Buchdunger E, Druker BJ . (2005). The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105: 2640–2653.

    CAS  PubMed  Google Scholar 

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. (2001). Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042.

    CAS  PubMed  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2: 561–566.

    CAS  PubMed  Google Scholar 

  • Eisterer W, Jiang X, Christ O, Glimm H, Lee KH, Pang E et al. (2005). Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 19: 435–441.

    CAS  PubMed  Google Scholar 

  • Emanuel PD, Snyder RC, Wiley T, Gopurala B, Castleberry RP . (2000). Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood 95: 639–645.

    CAS  PubMed  Google Scholar 

  • Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. (2003). A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 102: 2763–2767.

    CAS  PubMed  Google Scholar 

  • Giles FJ, Albitar M . (2005). Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 5: 653–661.

    CAS  PubMed  Google Scholar 

  • Gilliland DG, Tallman MS . (2002). Focus on acute leukemias. Cancer Cell 1: 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Golub TR, Barker GF, Lovett M, Gilliland DG . (1994). Fusion of the PDGF receptor b to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77: 307–316.

    CAS  PubMed  Google Scholar 

  • Golub TR, Goga A, Barker GF, Afar DEH, McLaughlin J, Bohlander SK et al. (1996). Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 16: 4107–4116.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gouilleux-Gruart V, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J et al. (1996). STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87: 1692–1697.

    CAS  PubMed  Google Scholar 

  • Grandage VL, Gale RE, Linch DC, Khwaja A . (2005). PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 19: 586–594.

    CAS  PubMed  Google Scholar 

  • Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. (2004). Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 36: 1084–1089.

    CAS  PubMed  Google Scholar 

  • Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F et al. (2004). The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 13: 169–178.

    CAS  PubMed  Google Scholar 

  • Gu H, Pratt JC, Burakoff SJ, Neel BG . (1998). Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell 2: 729–740.

    CAS  PubMed  Google Scholar 

  • Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y et al. (2001). Essential role for Gab2 in the allergic response. Nature 412: 186–190.

    CAS  PubMed  Google Scholar 

  • Gururajan M, Dasu T, Shahidain S, Jennings CD, Robertson DA, Rangnekar VM et al. (2007). Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol 178: 111–121.

    CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2317.

    CAS  PubMed  Google Scholar 

  • Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS et al. (2005). The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105: 4163–4169.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. (2002). Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99: 16220–16225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haferlach T, Winkemann M, Nickenig C, Meeder M, Ramm-Petersen L, Schoch R et al. (1997). Which compartments are involved in Philadelphia-chromosome positive chronic myeloid leukemia?An answer at the single cell level by combining May–Grünwald–Giemsa staining and fluorescence in situ hybridization techniques. Br J Haematol 97: 99–106.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y et al. (2006). Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 107: 4898–4906.

    CAS  PubMed  Google Scholar 

  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. (2004). MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6: 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Ilaria RL, Van Etten RA . (1996). P210 and P190BCR/ABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271: 31704–31710.

    CAS  PubMed  Google Scholar 

  • Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud O, Gjertsen BT et al. (2004). Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118: 217–228.

    CAS  PubMed  Google Scholar 

  • Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL . (2003). Expression of BCR/ABL and BCL2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 100: 10002–10007.

    CAS  PubMed Central  PubMed  Google Scholar 

  • James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  • Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. (2004). Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  • Jones AV, Cross NC . (2004). Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci 61: 2912–2923.

    CAS  PubMed  Google Scholar 

  • Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L et al. (2005). Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106: 2162–2168.

    CAS  PubMed  Google Scholar 

  • Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. (2000). The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 192: 1365–1372.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. (2002a). PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 99: 8283–8288.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . (2002b). FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 99: 310–318.

    CAS  PubMed  Google Scholar 

  • Klion AD, Noel P, Akin C, Law MA, Gilliland DG, Cools J et al. (2003). Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 101: 4660–4666.

    CAS  PubMed  Google Scholar 

  • Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . (2002). Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 100: 2393–2398.

    CAS  PubMed  Google Scholar 

  • Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790.

    CAS  PubMed  Google Scholar 

  • Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. (2006). Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 108: 1377–1380.

    CAS  PubMed  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442: 818–822.

    CAS  PubMed  Google Scholar 

  • Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . (2006). JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108: 1652–1660.

    CAS  PubMed  Google Scholar 

  • Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. (1997). A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1309–1312.

    CAS  PubMed  Google Scholar 

  • Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. (2006). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929–1935.

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.

    CAS  PubMed  Google Scholar 

  • Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS et al. (2004). Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103: 4243–4250.

    CAS  PubMed  Google Scholar 

  • Lee JW, Soung YH, Park WS, Kim SY, Nam SW, Min WS et al. (2004). BRAF mutations in acute leukemias. Leukemia 18: 170–172.

    CAS  PubMed  Google Scholar 

  • Lessard J, Sauvageau G . (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260.

    CAS  PubMed  Google Scholar 

  • Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387–397.

    CAS  PubMed  Google Scholar 

  • Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. (2005). Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 102: 18962–18967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunghi P, Tabilio A, Dall'Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG et al. (2003). Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 17: 1783–1793.

    CAS  PubMed  Google Scholar 

  • Macdonald D, Reiter A, Cross NCP . (2002). The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 107: 101–107.

    CAS  PubMed  Google Scholar 

  • Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. (2006). Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20: 911–928.

    CAS  PubMed  Google Scholar 

  • Milella M, Estrov Z, Kornblau SM, Carter BZ, Konopleva M, Tari A et al. (2002). Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 99: 3461–3464.

    CAS  PubMed  Google Scholar 

  • Million RP, Van Etten RA . (2000). The Grb2 binding site is required for induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 96: 664–670.

    CAS  PubMed  Google Scholar 

  • Million RP, Aster J, Gilliland DG, Van Etten RA . (2002). The Tel-Abl (ETV6-Abl) tyrosine kinase, product of complex (9;12) translocations in human leukemia, induces distinct myeloproliferative disease in mice. Blood 99: 4568–4577.

    CAS  PubMed  Google Scholar 

  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. (1996). Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  • Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. (1999). Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis.J Exp Med 189: 1229–1242.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. (2003). Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase myeloid leukemia. N Engl J Med 348: 994–1004.

    CAS  PubMed  Google Scholar 

  • Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM et al. (2003). CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 102: 3093–3096.

    CAS  PubMed  Google Scholar 

  • Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. (2006). MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108: 3472–3476.

    CAS  PubMed  Google Scholar 

  • Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S et al. (1998). Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385–395.

    CAS  PubMed  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.

    CAS  PubMed  Google Scholar 

  • Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. (1993). BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75: 175–185.

    CAS  PubMed  Google Scholar 

  • Pendergast AM . (2002). The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85: 51–100.

    CAS  PubMed  Google Scholar 

  • Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. (2006). MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3: e270.

    PubMed Central  PubMed  Google Scholar 

  • Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG et al. (1994). Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 13: 764–773.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F et al. (2004). The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci 61: 2939–2953.

    CAS  PubMed  Google Scholar 

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.

    CAS  PubMed  Google Scholar 

  • Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC et al. (2004). Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell 5: 287–298.

    CAS  PubMed  Google Scholar 

  • Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB . (2006). Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res 66: 6468–6472.

    CAS  PubMed  Google Scholar 

  • Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. (2002). Essential role for Gab2 in transformation by BCR/ABL. Cancer Cell 1: 479–492.

    CAS  PubMed  Google Scholar 

  • Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A et al. (2006). Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 107: 3279–3287.

    CAS  PubMed  Google Scholar 

  • Schlessinger J . (2000). Cell signaling by receptor tyrosine kinases. Cell 13: 211–225.

    Google Scholar 

  • Scott LM, Campbell PJ, Baxter EJ, Todd T, Stephens P, Edkins S et al. (2005). The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 106: 2920–2921.

    CAS  PubMed  Google Scholar 

  • Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. (2007). JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356: 459–468.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD et al. (2000). Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of STAT5. Blood 96: 2277–2283.

    CAS  PubMed  Google Scholar 

  • Shannon K . (1995). The Ras signaling pathway and the molecular basis of myeloid leukemogenesis. Curr Opin Hematol 2: 305–308.

    CAS  PubMed  Google Scholar 

  • Side L, Taylor B, Cayouette M, Connor E, Thompson P, Luce M et al. (1997). Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 336: 1713–1720.

    CAS  PubMed  Google Scholar 

  • Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. (2004). Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103: 3669–3676.

    CAS  PubMed  Google Scholar 

  • Smith KM, Yacobi R, Van Etten RA . (2003). Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell 12: 27–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Somervaille TC, Cleary ML . (2006). Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10: 257–268.

    CAS  PubMed  Google Scholar 

  • Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL et al. (2005). The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes. Blood 106: 1207–1209.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL et al. (2006). JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 20: 971–978.

    CAS  PubMed  Google Scholar 

  • Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. (2005). Acute myeloid leukemia patients with an activating mutation in FLT3 respond to a small molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105: 54–60.

    CAS  PubMed  Google Scholar 

  • Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P et al. (2006). Activation of FIP1L1-PDGFRalpha requires disruption of the juxtamembrane domain of PDGFRalpha and is FIP1L1-independent. Proc Natl Acad Sci USA 103: 8078–8083.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. (2005). Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106: 1063–1066.

    CAS  PubMed  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29: 465–468.

    CAS  PubMed  Google Scholar 

  • Tartaglia M, Niemeyer CM, Shannon KM, Loh ML . (2004). SHP-2 and myeloid malignancies. Curr Opin Hematol 11: 44–50.

    CAS  PubMed  Google Scholar 

  • Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. (2002). Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99: 121–129.

    CAS  PubMed  Google Scholar 

  • Trowbridge JJ, Scott MP, Bhatia M . (2006). Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 103: 14134–14139.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N et al. (2004). Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32: 179–187.

    CAS  PubMed  Google Scholar 

  • Van Etten RA, Shannon KM . (2004). Focus on myeloproliferative diseases and myelodysplastic syndromes. Cancer Cell 6: 547–552.

    CAS  PubMed  Google Scholar 

  • Van Etten RA . (1999). Cycling, stressed-out, and nervous: cellular functions of c-Abl. Trends Cell Biol 9: 179–186.

    CAS  PubMed  Google Scholar 

  • Van Etten RA . (2001). Models of chronic myeloid leukemia. Curr Oncol Rep 3: 228–237.

    CAS  PubMed  Google Scholar 

  • Van Etten RA . (2003). c-Abl regulation: a tail of two lipids. Curr Biol 13: R608–R610.

    CAS  PubMed  Google Scholar 

  • Van Etten RA . (2004). Mechanisms of transformation by the BCR-ABL oncogene: new perspectives in the post-imatinib era. Leuk Res 28 (Suppl 1): S21–S28.

    CAS  PubMed  Google Scholar 

  • Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6: 1278–1281.

    CAS  PubMed  Google Scholar 

  • Wadleigh M, DeAngelo DJ, Griffin JD, Stone RM . (2005). After chronic myelogenous leukemia: tyrosine kinase inhibitors in other hematologic malignancies. Blood 105: 22–30.

    CAS  PubMed  Google Scholar 

  • Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M et al. (2006). Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10: 65–75.

    CAS  PubMed  Google Scholar 

  • Walz C, Curtis C, Schnittger S, Schultheis B, Metzgeroth G, Schoch C et al. (2006). Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2-PDGFRA fusion gene. Genes Chromosomes Cancer 45: 950–956.

    CAS  PubMed  Google Scholar 

  • Wang JC, Dick JE . (2005). Cancer stem cells: lessons from leukemia. Trends Cell Biol 15: 494–501.

    CAS  PubMed  Google Scholar 

  • Wang JCY, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR et al. (1998). High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 91: 2406–2414.

    CAS  PubMed  Google Scholar 

  • Wang L, Wang J, Blaser BW, Duchemin AM, Kusewitt DF, Liu T et al. (2007). Pharmacologic inhibition of CDK4/6: mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood, published online 30 May 2007; doi:10.1182/blood-2007-02-071266.

    CAS  PubMed  Google Scholar 

  • Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R et al. (1996). Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 88: 809–816.

    CAS  PubMed  Google Scholar 

  • Weinstein IB . (2002). Addiction to oncogenes-the Achilles heal of cancer. Science 297: 63–64.

    CAS  PubMed  Google Scholar 

  • Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. (2002). Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1: 433–443.

    CAS  PubMed  Google Scholar 

  • Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . (2006). Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107: 4274–4281.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wossning T, Herzog S, Kohler F, Meixlsperger S, Kulathu Y, Mittler G et al. (2006). Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. J Exp Med 203: 2829–2840.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ . (2004). Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 64: 6461–6468.

    CAS  PubMed  Google Scholar 

  • Xia Z, Baer MR, Block AW, Baumann H, Wetzler M . (1998). Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Res 58: 3173–3180.

    CAS  PubMed  Google Scholar 

  • Xiao S, Nalabolu SR, Aster JC, Ma J, Abruzzo L, Jaffe ES et al. (1998). FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 18: 84–87.

    CAS  PubMed  Google Scholar 

  • Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . (2003). Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102: 972–980.

    CAS  PubMed  Google Scholar 

  • Xu Q, Thompson JE, Carroll M . (2005). mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106: 4261–4268.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. (2001). Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97: 2434–2439.

    CAS  PubMed  Google Scholar 

  • Ye D, Wolff N, Li L, Zhang S, Ilaria Jr RL . (2006). STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 107: 4917–4925.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P et al. (2002). Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 62: 188–199.

    CAS  PubMed  Google Scholar 

  • Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S et al. (2006). Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 1: e18.

    PubMed Central  PubMed  Google Scholar 

  • Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R . (2001). The NH2-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 21: 840–853.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. (2004). Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18: 267–275.

    CAS  PubMed  Google Scholar 

  • Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC et al. (2004). FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 103: 267–274.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH Grants CA090576 and CA105043, and by a SCOR grant from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Van Etten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Etten, R. Aberrant cytokine signaling in leukemia. Oncogene 26, 6738–6749 (2007). https://doi.org/10.1038/sj.onc.1210758

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210758

Keywords

This article is cited by

Search

Quick links