Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function

Abstract

Functional inactivation of the retinoblastoma tumor suppressor gene product (RB) is a common event in human cancers. Classically, RB functions to constrain cellular proliferation, and loss of RB is proposed to facilitate the hyperplastic proliferation associated with tumorigenesis. To understand the repertoire of regulatory processes governed by RB, two models of RB loss were utilized to perform microarray analysis. In murine embryonic fibroblasts harboring germline loss of RB, there was a striking deregulation of gene expression, wherein distinct biological pathways were altered. Specifically, genes involved in cell cycle control and classically associated with E2F-dependent gene regulation were upregulated via RB loss. In contrast, a program of gene expression associated with immune function and response to pathogens was significantly downregulated with the loss of RB. To determine the specific influence of RB loss during a defined period and without the possibility of developmental compensation as occurs in embryonic fibroblasts, a second system was employed wherein Rb was acutely knocked out in adult fibroblasts. This model confirmed the distinct regulation of cell cycle and immune modulatory genes through RB loss. Analyses of cis-elements supported the hypothesis that the majority of those genes upregulated with RB loss are regulated via the E2F family of transcription factors. In contrast, those genes whose expression was reduced with the loss of RB harbored different promoter elements. Consistent with these analyses, we found that disruption of E2F-binding function of RB was associated with the upregulation of gene expression. In contrast, cells harboring an RB mutant protein (RB-750F) that retains E2F-binding activity, but is specifically deficient in the association with LXCXE-containing proteins, failed to upregulate these same target genes. However, downregulation of genes involved in immune function was readily observed with disruption of the LXCXE-binding function of RB. Thus, these studies demonstrate that RB plays a significant role in both the positive and negative regulations of transcriptional programs and indicate that loss of RB has distinct biological effects related to both cell cycle control and immune function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Arany I, Tyring SK . (1996). Status of local cellular immunity in interferon-responsive and -nonresponsive human papillomavirus-associated lesions. Sex Transm Dis 23: 475–480.

    Article  CAS  PubMed  Google Scholar 

  • Batsche E, Moschopoulos P, Desroches J, Bilodeau S, Drouin J . (2005). Retinoblastoma and the related pocket protein p107 act as coactivators of NeuroD1 to enhance gene transcription. J Biol Chem 280: 16088–16095.

    Article  CAS  PubMed  Google Scholar 

  • Black EP, Huang E, Dressman H, Rempel R, Laakso N, Asa SL et al.(2003). Distinct gene expression phenotypes of cells lacking Rb and Rb family members. Cancer Res 63: 3716–3723.

    CAS  PubMed  Google Scholar 

  • Blais A, Dynlacht BD . (2004). Hitting their targets: an emerging picture of E2F and cell cycle control. Curr Opin Genet Dev 14: 527–532.

    Article  CAS  PubMed  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601.

    Article  CAS  PubMed  Google Scholar 

  • Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R et al. (2004). A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell 16: 399–411.

    Article  CAS  PubMed  Google Scholar 

  • Cam H, Dynlacht BD . (2003). Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Chen TT, Wang JY . (2000). Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function. Mol Cell Biol 20: 5571–5580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  • Dimova DK, Dyson NJ . (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810–2826.

    Article  CAS  PubMed  Google Scholar 

  • Eason DD, Coppola D, Livingston S, Shepherd AT, Blanck G . (2001). Loss of MHC class II inducibility in hyperplastic tissue in Rb-defective mice. Cancer Lett 171: 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Frolov MV, Dyson NJ . (2004). Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117 (Part 11): 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  • Iavarone A, King ER, Dai XM, Leone G, Stanley ER, Lasorella A . (2004). Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature 432: 1040–1045.

    Article  CAS  PubMed  Google Scholar 

  • Iovino F, Lentini L, Amato A, Di Leonardo A . (2006). RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer 20: 5:38.

    Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jegga AG, Gupta A, Gowrisankar S, Deshmukh MA, Connolly S, Finley K et al. (2005). CisMols Analyzer: identification of compositionally similar cis-element clusters in ortholog conserved regions of coordinately expressed genes. Nucleic Acids Res 33: W408–W411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jegga AG, Sherwood SP, Carman JW, Pinski AT, Phillips JL, Pestian JP et al. (2002). Detection and visualization of compositionally similar cis-regulatory element clusters in orthologous and coordinately controlled genes. Genome Res 12: 1408–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen ES, Buckmaster C, Chen TT, Feramisco JR, Wang JY . (1998). Inhibition of DNA synthesis by RB: effects on G1/S transition and S-phase progression. Genes Dev 12: 2278–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T . (1995). Transcriptional control by the retinoblastoma protein. Semin Cancer Biol 6: 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Le Buanec H, D'Anna R, Lachgar A, Zagury JF, Bernard J, Ittele D et al. (1999). HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenic processes. Biomed Pharmacother 53: 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ussery GD, Muncaster MM, Gallie BL, Blanck G . (1994). Evidence for retinoblastoma protein (RB) dependent and independent IFN-gamma responses: RB coordinately rescues IFN-gamma induction of MHC class II gene transcription in noninducible breast carcinoma cells. Oncogene 9: 1015–1019.

    CAS  PubMed  Google Scholar 

  • Markey MP, Angus SP, Strobeck MW, Williams SL, Gunawardena RW, Aronow BJ et al. (2002). Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res 62: 6587–6597.

    CAS  PubMed  Google Scholar 

  • Mayhew CN, Perkin LM, Zhang X, Sage J, Jacks T, Knudsen ES . (2004). Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene 23: 4107–4120.

    Article  CAS  PubMed  Google Scholar 

  • Morris EJ, Dyson NJ . (2001). Retinoblastoma protein partners. Adv Cancer Res 82: 1–54.

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR . (2001). The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699–703.

    Article  CAS  PubMed  Google Scholar 

  • Osborne A, Tschickardt M, Blanck G . (1997). Retinoblastoma protein expression facilitates chromatin remodeling at the HLA-DRA promoter. Nucleic Acids Res 25: 5095–5102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne AR, Zhang H, Fejer G, Palubin KM, Niesen MI, Blanck G . (2004). Oct-1 maintains an intermediate, stable state of HLA-DRA promoter repression in Rb-defective cells: an Oct-1-containing repressosome that prevents NF-Y binding to the HLA-DRA promoter. J Biol Chem 279: 28911–28919.

    Article  CAS  PubMed  Google Scholar 

  • Qin XQ, Livingston DM, Ewen M, Sellers WR, Arany Z, Kaelin Jr WG . (1995). The transcription factor E2F-1 is a downstream target of RB action. Mol Cell Biol 15: 742–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T . (2003). Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN et al. (2000). BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97: 7748–7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC et al. (2001). The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 8: 303–316.

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Yang HS, Alexander K, Hinds PW . (2003). Role of the retinoblastoma protein in differentiation and senescence. Cancer Biol Ther 2: 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T . (1997). RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA 94: 11268–11273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernell R, Helin K, Muller H . (2003). Identification of target genes of the p16INK4A–pRB–E2F pathway. J Biol Chem 278: 46124–46137.

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Knudsen ES, Welch PJ . (1994). The retinoblastoma tumor suppressor protein. Adv Cancer Res 64: 25–28 5..

    Article  CAS  PubMed  Google Scholar 

  • Welch PJ, Wang JY . (1995). Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms. Mol Cell Biol 15: 5542–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Pramanik R, Choubey D . (2003). Retinoblastoma (Rb) protein upregulates expression of the Ifi202 gene encoding an interferon-inducible negative regulator of cell growth. Oncogene 22: 4775–4785.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Pattenden S, Bremner R . (1999). pRB is required for interferon-gamma-induction of the MHC class II abeta gene. Oncogene 18: 4940–4947.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr George Blanck, Dr Karen Knudsen and Dr Lisa Morey for critical commentary on the manuscript. We also thank Dr Julien Sage and Dr Tyler Jacks for the provision of mouse strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Knudsen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markey, M., Bergseid, J., Bosco, E. et al. Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26, 6307–6318 (2007). https://doi.org/10.1038/sj.onc.1210450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210450

Keywords

This article is cited by

Search

Quick links