Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ubiquitin-mediated activation of TAK1 and IKK

Abstract

Transforming growth factor β activated kinase-1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, has emerged as a key regulator of signal transduction cascades leading to the activation of the transcription factors nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Stimulation of cells with cytokines and microbial pathogens results in the activation of TAK1, which subsequently activates the I-kappa B kinase complex (IKK) and mitogen-activated protein (MAP) kinases, culminating in the activation of NF-κB and AP-1, respectively. Recent studies have shown that polyubiquitination of signalling proteins through lysine (Lys)-63-linked polyubiquitin chains plays an important role in the activation of TAK1 and IKK. Unlike Lys-48-linked polyubiquitination, which normally targets proteins for degradation by the proteasome, Lys-63-linked polyubiquitin chains act as scaffolds to assemble protein kinase complexes and mediate their activation through proteasome-independent mechanisms. The concept of ubiquitin-mediated activation of protein kinases is supported by the discoveries of ubiquitination and deubiquitination enzymes as well as ubiquitin-binding proteins that function upstream of TAK1 and IKK. Recent biochemical and genetic studies provide further insights into the mechanism and function of ubiquitin signalling and these advances will be the focus of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Abbott DW, Wilkins A, Asara JM, Cantley LC . (2004). The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 14: 2217–2227.

    Article  CAS  PubMed  Google Scholar 

  • Agou F, Traincard F, Vinolo E, Courtois G, Yamaoka S, Israel A et al. (2004). The trimerization domain of NEMO is composed of the interacting C-terminal CC2 and LZ coiled-coil subdomains. J Biol Chem 279: 27861–27869.

    Article  CAS  PubMed  Google Scholar 

  • Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M . (1999). Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 13: 1297–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R et al. (2000). Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25: 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C et al. (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5: 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424: 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Cannons JL, Bertram EM, Watts TH . (2002). Cutting edge: profound defect in T cell responses in TNF receptor-associated factor 2 dominant negative mice. J Immunol 169: 2828–2831.

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV . (1996). TRAF6 is a signal transducer for interleukin-1. Nature 383: 443–446.

    Article  CAS  PubMed  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK et al. (1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576–1583.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ . (2005). Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7: 758–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Bhoj V, Seth RB . (2006). Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13: 687–692.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Parent L, Maniatis T . (1996). Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853–862.

    Article  CAS  PubMed  Google Scholar 

  • Cheung PC, Nebreda AR, Cohen P . (2004). TAB3, a new binding partner of the protein kinase TAK1. Biochem J 378: 27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JY, Park YC, Ye H, Wu H . (2002). All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115: 679–688.

    Article  CAS  PubMed  Google Scholar 

  • Conner SH, Kular G, Peggie M, Shepherd S, Schuttelkopf AW, Cohen P et al. (2006). TAK1-binding protein 1 is a pseudo-phosphatase. Biochem J 399: 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook WJ, Jeffrey LC, Carson M, Chen Z, Pickart CM . (1992). Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem 267: 16467–16471.

    Article  CAS  PubMed  Google Scholar 

  • Courtois G, Gilmore TD . (2006). Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25: 6831–6843.

    Article  CAS  PubMed  Google Scholar 

  • Delaney JR, Stoven S, Uvell H, Anderson KV, Engstrom Y, Mlodzik M . (2006). Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 25: 3068–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ . (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22: 245–257.

    Article  CAS  PubMed  Google Scholar 

  • Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C . (2006). Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol 13: 915–920.

    Article  CAS  PubMed  Google Scholar 

  • Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S et al. (2004). Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 378: 727–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT et al. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Geuking P, Narasimamurthy R, Basler K . (2005). A genetic screen targeting the tumor necrosis factor/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 171: 1683–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG et al. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Hauer J, Puschner S, Ramakrishnan P, Simon U, Bongers M, Federle C et al. (2005). TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci USA 102: 2874–2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicke L, Schubert HL, Hill CP . (2005). Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6: 610–621.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann RM, Pickart CM . (1999). Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96: 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann RM, Pickart CM . (2001). In vitro assembly and recognition of Lys-63 polyubiquitin chains. J Biol Chem 276: 27936–27943.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG et al. (2004). Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5: 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S . (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N et al. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399: 798–802.

    Article  CAS  PubMed  Google Scholar 

  • Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K . (2003). Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J 22: 6277–6288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeschke A, Karasarides M, Ventura JJ, Ehrhardt A, Zhang C, Flavell RA et al. (2006). JNK2 is a positive regulator of the cJun transcription factor. Mol Cell 23: 899–911.

    Article  CAS  PubMed  Google Scholar 

  • Janssens S, Tinel A, Lippens S, Tschopp J . (2005). PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123: 1079–1092.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X . (2002). Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22: 7158–7167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK et al. (2004). NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 279: 36171–36174.

    Article  CAS  PubMed  Google Scholar 

  • Kajino T, Ren H, Iemura SI, Natsume T, Stefansson B, Brautigan DL et al. (2006). Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem 281: 39891–39896.

    Article  CAS  PubMed  Google Scholar 

  • Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A et al. (2004). TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15: 535–548.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Silverman N . (2005). Bacterial recognition and signalling by the Drosophila IMD pathway. Cell Microbiol 7: 1049–1050.

    Article  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H et al. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981–988.

    Article  CAS  PubMed  Google Scholar 

  • King CG, Kobayashi T, Cejas PJ, Kim T, Yoon K, Kim GK et al. (2006). TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med 12: 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  • Kleino A, Valanne S, Ulvila J, Kallio J, Myllymaki H, Enwald H et al. (2005). Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J 24: 3423–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S et al. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20: 1271–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu Y, Shibuya H, Takeda N, Ninomiya-Tsuji J, Yasui T, Miyado K et al. (2002). Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev 119: 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA et al. (1999). ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 13: 2059–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko A, Wallach D . (2006). If the prophet does not come to the mountain: dynamics of signaling complexes in NF-kappaB activation. Mol Cell 22: 433–436.

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . (2003). The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424: 801–805.

    Article  CAS  PubMed  Google Scholar 

  • Krappmann D, Scheidereit C . (2005). A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep 6: 321–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krikos A, Laherty CD, Dixit VM . (1992). Transcriptional activation of the tumor necrosis factor alpha-inducible zinc-finger protein, A20, is mediated by kappa B elements. J Biol Chem 267: 17971–17976.

    Article  CAS  PubMed  Google Scholar 

  • Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG . (2007). Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IkappaB kinase activation. J Biol Chem 282: 4102–4112.

    Article  CAS  PubMed  Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP et al. (2000). Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289: 2350–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM et al. (2006). Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 13: 264–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y . (1997). TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 7: 703–713.

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Shank J, Cusson N, Kelliher MA . (2004). The kinase activity of Rip1 is not required for tumor necrosis factor-{alpha}-induced I{kappa}B kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem 279: 33185–33191.

    Article  CAS  PubMed  Google Scholar 

  • Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C . (2003). Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18: 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Kobayashi M, Blonska M, You Y, Lin X . (2006). Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 281: 13636–13643.

    Article  CAS  PubMed  Google Scholar 

  • Li MG, Katsura K, Nomiyama H, Komaki K, Ninomiya-Tsuji J, Matsumoto K et al. (2003). Regulation of the interleukin-1-induced signaling pathways by a novel member of the protein phosphatase 2C family (PP2Cepsilon). J Biol Chem 278: 12013–12021.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Commane M, Burns C, Vithalani K, Cao Z, Stark GR . (1999). Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol Cell Biol 19: 4643–4652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HH, Xie M, Schneider MD, Chen ZJ . (2006). Essential role of TAK1 in thymocyte development and activation. Proc Natl Acad Sci USA 103: 11677–11682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabb AM, Wuerzberger-Davis SM, Miyamoto S . (2006). PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8: 986–993.

    Article  CAS  PubMed  Google Scholar 

  • Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R . (2006). Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125: 665–677.

    Article  CAS  PubMed  Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R et al. (2005). Cardif is an adaptor protein in the RIG-I anti-viral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172.

    Article  CAS  PubMed  Google Scholar 

  • Momcilovic M, Hong SP, Carlson M . (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281: 25336–25343.

    Article  CAS  PubMed  Google Scholar 

  • Muralidhar MG, Thomas JB . (1993). The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 11: 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K . (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B et al. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent anti-viral response. Nature 439: 208–211.

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Ohtomo T, Sato S, Sugamata Y, Suzuki M, Hisamoto N et al. (2001). An evolutionarily conserved motif in the TAB1 C-terminal region is necessary for interaction with and activation of TAK1 MAPKKK. J Biol Chem 276: 24396–24400.

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR et al. (2006). The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13: 712–729.

    Article  CAS  PubMed  Google Scholar 

  • Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A et al. (2006). Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124: 1183–1195.

    Article  CAS  PubMed  Google Scholar 

  • Petroski MD, Deshaies RJ . (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6: 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Yao J, Cui G, Xiao H, Kim TW, Fraczek J et al. (2006). TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. J Biol Chem 281: 21013–21021.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DJ, Sommer K, Moreno-Garcia ME . (2006). The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 6: 799–812.

    Article  CAS  PubMed  Google Scholar 

  • Reiley WW, Zhang M, Jin W, Losiewicz M, Donohue KB, Norbury CC et al. (2006). Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat Immunol 7: 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Cheng G . (2006). TRAF3: a new regulator of type I interferons. Cell Cycle 5: 804–807.

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G et al. (2006). Regulation of anti-viral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25: 3257–3263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjo H, Takeda K, Tsujimura T, Ninomiya-Tsuji J, Matsumoto K, Akira S . (2003). TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol 23: 1231–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Sanjo H, Tsujimura T, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al. (2006). TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int Immunol 18: 1405–1411.

    Article  CAS  PubMed  Google Scholar 

  • Scheidereit C . (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25: 6685–6705.

    Article  CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D . (1986a). Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47: 921–928.

    Article  CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D . (1986b). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705–716.

    Article  CAS  PubMed  Google Scholar 

  • Seth RB, Sun L, Chen ZJ . (2006). Anti-viral innate immunity pathways. Cell Res 16: 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Seth RB, Sun L, Ea CK, Chen ZJ . (2005). Identification and characterization of MAVS, a mitochondrial anti-viral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669–682.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J . (2003). Triggering the interferon anti-viral response through an IKK-related pathway. Science 300: 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  • Shi CS, Kehrl JH . (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 278: 15429–15434.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K et al. (1998). Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 17: 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N et al. (1996). TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272: 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19: 2668–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M, Watarai H et al. (2005). PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med 202: 1423–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, Schneider D et al. (2003). Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278: 48928–48934.

    Article  CAS  PubMed  Google Scholar 

  • Smit L, Baas A, Kuipers J, Korswagen H, van de Wetering M, Clevers H . (2004). Wnt activates the Tak1/Nemo-like kinase pathway. J Biol Chem 279: 17232–17240.

    Article  CAS  PubMed  Google Scholar 

  • Spence J, Sadis S, Haas AL, Finley D . (1995). A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15: 1265–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Chen ZJ . (2004). The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16: 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ . (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14: 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S et al. (2001). Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 276: 36530–36534.

    Article  CAS  PubMed  Google Scholar 

  • Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K et al. (2000). TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5: 649–658.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Rothe M, Goeddel DV . (1996). Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 271: 19935–19942.

    Article  CAS  PubMed  Google Scholar 

  • Tang ED, Wang CY, Xiong Y, Guan KL . (2003). A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 278: 37297–37305.

    Article  CAS  PubMed  Google Scholar 

  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424: 793–796.

    Article  CAS  PubMed  Google Scholar 

  • VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C . (2001). Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105: 711–720.

    Article  CAS  PubMed  Google Scholar 

  • Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D . (2004). Solution conformation of Lys63-linked diubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279: 7055–7063.

    Article  CAS  PubMed  Google Scholar 

  • Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre B . (2001). Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes Dev 15: 1900–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan YY, Chi H, Xie M, Schneider MD, Flavell RA . (2006). The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 7: 851–858.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ . (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Weil R, Israel A . (2006). Deciphering the pathway from the TCR to NF-kappaB. Cell Death Differ 13: 826–833.

    Article  CAS  PubMed  Google Scholar 

  • Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430: 694–699.

    Article  CAS  PubMed  Google Scholar 

  • Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD . (2006a). NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-kappaB activation. Nat Cell Biol 8: 398–406.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Arron JR . (2003). TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 25: 1096–1105.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZH, Shi Y, Tibbetts RS, Miyamoto S . (2006b). Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311: 1141–1146.

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Shim JH, Kluppel M, Zhang SS, Dong C, Flavell RA et al. (2003). Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes Dev 17: 2933–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M et al. (2006). A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103: 17378–17383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB . (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Okamoto T, Takeda K, Sato S, Sanjo H, Uematsu S et al. (2006a). Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 7: 962–970.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Sato S, Saitoh T, Sakurai H, Uematsu S, Kawai T et al. (2006b). Cutting edge: pivotal function of Ubc13 in thymocyte TCR signaling. J Immunol 177: 7520–7524.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L et al. (2001). The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2: 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Yeh WC, Shahinian A, Speiser D, Kraunus J, Billia F, Wakeham A et al. (1997). Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7: 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate anti-viral responses. Nat Immunol 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Yujiri T, Ware M, Widmann C, Oyer R, Russell D, Chan E et al. (2000). MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc Natl Acad Sci USA 97: 7272–7277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM et al. (2006). Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest 116: 3042–3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SQ, Kovalenko A, Cantarella G, Wallach D . (2000). Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12: 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wertz I, O’Rourke K, Ultsch M, Seshagiri S, Eby M et al. (2004). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427: 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Silverman N, Hong M, Liao DS, Chung Y, Chen ZJ et al. (2005). The role of ubiquitination in Drosophila innate immunity. J Biol Chem 280: 34048–34055.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang ZH, Sun L, Kong L, Hu JH, Yu MC, Reinach P et al. (2006). Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB. Cell Signal 18: 964–970.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Chen laboratory is supported by grants from NIH and the Welch Foundation. ZJC is a Burroughs Wellcome Investigator in Pathogenesis of Infectious Diseases and an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z J Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikari, A., Xu, M. & Chen, Z. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26, 3214–3226 (2007). https://doi.org/10.1038/sj.onc.1210413

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210413

Keywords

This article is cited by

Search

Quick links