Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway

Abstract

The mechanisms of cell transformation mediated by the nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) tyrosine kinase are only partially understood. Here, we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma display persistent activation of mammalian target of rapamycin (mTOR) as determined by phosphorylation of mTOR targets S6rp and 4E-binding protein 1 (4E-BP1). The mTOR activation is serum growth factor-independent but nutrient-dependent. It is also dependent on the expression and enzymatic activity of NPM/ALK as demonstrated by cell transfection with wild-type and functionally deficient NPM/ALK, small interfering RNA (siRNA)-mediated NPM/ALK depletion and kinase activity suppression using the inhibitor WHI-P154. The NPM/ALK-induced mTOR activation is transduced through the mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway and, to a much lesser degree, through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Accordingly, whereas the low-dose PI3K inhibitor wortmannin and Akt inhibitor III profoundly inhibited Akt phosphorylation, they had a very modest effect on S6rp and 4E-BP1 phosphorylation. In turn, MEK inhibitors U0126 and PD98059 and siRNA-mediated depletion of either ERK1 or ERK2 inhibited S6rp phosphorylation much more effectively. Finally, the mTOR inhibitor rapamycin markedly decreased proliferation and increased the apoptotic rate of ALK+TCL cells. These findings identify mTOR as a novel key target of NPM/ALK and suggest that mTOR inhibitors may prove effective in therapy of ALK-induced malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arvisais EW, Romanelli A, Hou X, Davis JS . (2006). AKT-independent phosphorylation of TSC2 and activation of mTOR and ribosomal protein S6 kinase signaling by prostaglandin F2alpha. J Biol Chem 281: 26904–26913.

    Article  CAS  PubMed  Google Scholar 

  • Bischof D, Pulford K, Mason DY, Morris SW . (1997). Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 17: 2312–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence Jr JC, Abraham RT . (1996). Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15: 5256–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgering BM, Coffer PJ . (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599–602.

    Article  CAS  PubMed  Google Scholar 

  • Byfield MP, Murray JT, Backer JM . (2005). hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280: 33076–33082.

    Article  CAS  PubMed  Google Scholar 

  • Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. (2005). Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11: 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Pan D . (2004). Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev 18: 2479–2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S et al. (1996). Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 93: 4181–4186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N . (2004). Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA . (2006). Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci USA 103: 9964–9969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Mason DY et al. (1997). Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90: 2901–2910.

    CAS  PubMed  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Majewski M, Korecka M, Joergensen J, Fields L, Kossev P, Schuler W et al. (2003). Immunosuppressive TOR kinase inhibitor everolimus (RAD) suppresses growth of cells derived from posttransplant lymphoproliferative disorder at allograft-protecting doses. Transplantation 75: 1710–1717.

    Article  CAS  PubMed  Google Scholar 

  • Majewski M, Korecka M, Kossev P . (2000). The immunosuppressive macrolide RAD inhibits growth of human Epstein–Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders. Proc Natl Acad Sci USA 97: 4285–4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Kasprzycka M, Liu X, Raghunath PN, Wlodarski P, Wasik MA . (2007). Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 26: 813–821.

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Kasprzycka M, Ptasznik A, Wlodarski P, Zhang Q, Odum N et al. (2005). Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab Invest 85: 1544–1554.

    Article  CAS  PubMed  Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  • Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T . (2004). ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 117: 3319–3329.

    Article  CAS  PubMed  Google Scholar 

  • Nobukuni T, Joaquin M, Roccio M . (2005). Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102: 14238–14243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Golub TR, Sabatini DM . (2002). The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22: 5575–5584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH . (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Sakata A, Kuwahara K, Ohmura T, Inui S, Sakaguchi N . (1999). Involvement of a rapamycin-sensitive pathway in CD40-mediated activation of murine B cells in vitro. Immunol Lett 68: 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM et al. (2000). A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60: 3504–3513.

    CAS  PubMed  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Shillingford JM, Murcid NS, Larson CH . (2006). The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103: 5466–5471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S . (1994). Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene 9: 1567–1574.

    CAS  PubMed  Google Scholar 

  • Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L et al. (2001). Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 61: 2194–2199.

    CAS  PubMed  Google Scholar 

  • Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG . (2005). The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280: 18717–18727.

    Article  CAS  PubMed  Google Scholar 

  • Souttou B, Carvalho NB, Raulais D, Vigny M . (2001). Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J Biol Chem 276: 9526–9531.

    Article  CAS  PubMed  Google Scholar 

  • Suh JM, Song JH, Kim DW, Kim H, Chung HK, Hwang JH et al. (2003). Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J Biol Chem 278: 21960–21971.

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Usui I, Haruta T, Kawahara J, Uno T, Iwata M et al. (2001). Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 21: 5050–5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee AR, Anjum R, Blenis J . (2003). Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J Biol Chem 278: 37288–37296.

    Article  CAS  PubMed  Google Scholar 

  • Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L et al. (2006). Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66: 6589–6597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasik MA . (2002). Expression of anaplastic lymphoma kinase in non-Hodgkin's lymphomas and other malignant neoplasms. Biological, diagnostic, and clinical implications. Am J Clin Pathol 118 (Suppl): S81–S92.

    PubMed  Google Scholar 

  • Wlodarski P, Kasprzycka M, Liu X, Marzec M, Robertson ES, Slupianek A et al. (2005). Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res 65: 7800–7808.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME, Nowell PC et al. (1996). Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 93: 9148–9153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N et al. (2002). Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 168: 466–474.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grants R01-CA96856 and R01-DE-017337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Wasik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzec, M., Kasprzycka, M., Liu, X. et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26, 5606–5614 (2007). https://doi.org/10.1038/sj.onc.1210346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210346

Keywords

This article is cited by

Search

Quick links