Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cell-specific responses to loss of cyclin-dependent kinases

Abstract

Inactivation of cyclin-dependent kinases (Cdks) and/or cyclins in mice has changed our view of cell cycle regulation. In general, cells are far more resistant to the loss of Cdks than originally anticipated, suggesting widespread compensation among the Cdks. Early embryonic cells are, so far, not sensitive to the lack of multiple Cdks or cyclins. In contrast, differentiated cells are more dependent on Cdk/cyclin complexes and the functional redundancy is more limited. Our challenge is to better understand these cell-type specific differences in cell cycle regulation that can be used to design efficient cancer therapy. Indeed, tumor cells seem to respond to inhibition of Cdk activities, however, with different outcome depending on the tumor cell type. Tumor cells share some proliferation features with stem cells, but appear more sensitive to loss of Cdk activity, somewhat resembling differentiated cells. We summarize the current knowledge of cell cycle regulation in different cell types and highlight their sensitivity to the lack of Cdk activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R et al. (1998). ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8: 145–155.

    CAS  PubMed  Google Scholar 

  • Aleem E, Kaldis P . (2006). Mouse models of cell cycle regulators: new paradigms. Results Probl Cell Differ 42: 271–328.

    CAS  PubMed  Google Scholar 

  • Aleem E, Kiyokawa H, Kaldis P . (2005). Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7: 831–836.

    CAS  PubMed  Google Scholar 

  • Appert-Collin A, Hugel B, Levy R, Niederhoffer N, Coupin G, Lombard Y et al. (2006). Cyclin-dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. Life Sci 79: 484–490.

    CAS  PubMed  Google Scholar 

  • Arber N, Doki Y, Han EK, Sgambato A, Zhou P, Kim NH et al. (1997). Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res 57: 1569–1574.

    CAS  PubMed  Google Scholar 

  • Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P . (2003). Cdk2 knockout mice are viable. Curr Biol 13: 1775–1785.

    CAS  PubMed  Google Scholar 

  • Berthet C, Kaldis P . (2006). Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Div 1: 10.

    PubMed  PubMed Central  Google Scholar 

  • Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H et al. (2006). Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10: 563–573.

    CAS  PubMed  Google Scholar 

  • Bertram MJ, Berube NG, Hang-Swanson X, Ran Q, Leung JK, Bryce S et al. (1999). Identification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes. Mol Cell Biol 19: 1479–1485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco MA . (2005). Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 24: 1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs AM, Kirk J et al. (1998). Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci USA 95: 4344–4349.

    CAS  PubMed  Google Scholar 

  • Burdon T, Smith A, Savatier P . (2002). Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12: 432–438.

    CAS  PubMed  Google Scholar 

  • Cai D, Latham Jr VM, Zhang X, Shapiro GI . (2006). Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Res 66: 9270–9280.

    CAS  PubMed  Google Scholar 

  • Campisi J . (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120: 513–522.

    CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    CAS  PubMed  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, te Riele H . (2000). Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14: 3051–3064.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP . (2005). What has senescence got to do with cancer? Cancer Cell 7: 505–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Lyle CS, Obey TB, Gaarde WA, Muir JA, Bennett BL et al. (2004). Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic Bcl-2 phosphorylation is JNK-independent. J Biol Chem 279: 11957–11966.

    CAS  PubMed  Google Scholar 

  • Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C . (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9: 2364–2372.

    CAS  PubMed  Google Scholar 

  • Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85: 733–744.

    CAS  PubMed  Google Scholar 

  • Furuno N, den Elzen N, Pines J . (1999). Human cyclin A is required for mitosis until mid prophase. J Cell Biol 147: 295–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S et al. (2003). Cyclin E ablation in the mouse. Cell 114: 431–443.

    CAS  PubMed  Google Scholar 

  • Gil-Gomez G, Berns A, Brady HJ . (1998). A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 17: 7209–7218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hakem A, Sasaki T, Kozieradzki I, Penninger JM . (1999). The cyclin-dependent kinase Cdk2 regulates thymocyte apoptosis. J Exp Med 189: 957–968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P . (2002). Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21: 5515–5528.

    CAS  PubMed  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    CAS  PubMed  Google Scholar 

  • Kiyokawa H . (2006). Senescence and cell cycle control. Results Probl Cell Differ 42: 257–270.

    CAS  PubMed  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al. (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85: 721–732.

    CAS  PubMed  Google Scholar 

  • Knudsen ES, Knudsen KE . (2006). Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med 231: 1271–1281.

    Google Scholar 

  • Kornmann M, Arber N, Korc M . (1998). Inhibition of basal and mitogen-stimulated pancreatic cancer cell growth by cyclin D1 antisense is associated with loss of tumorigenicity and potentiation of cytotoxicity to cisplatinum. J Clin Invest 101: 344–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E et al. (2004). Mouse development and cell proliferation in the absence of D-cyclins. Cell 118: 477–491.

    CAS  PubMed  Google Scholar 

  • Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW . (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9: 13–22.

    CAS  PubMed  Google Scholar 

  • Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G et al. (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20: 672–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zou L . (2005). Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 94: 298–306.

    CAS  PubMed  Google Scholar 

  • Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118: 493–504.

    CAS  PubMed  Google Scholar 

  • Martin A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M et al. (2005). Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell 7: 591–598.

    CAS  PubMed  Google Scholar 

  • Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R . (1994). Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 91: 3754–3758.

    CAS  PubMed  Google Scholar 

  • Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG et al. (2004). Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol 24: 7538–7547.

    PubMed  PubMed Central  Google Scholar 

  • Mittnacht S . (1998). Control of pRB phosphorylation. Current Opinion in Genetics & Development 8: 21–27.

    CAS  Google Scholar 

  • Miura T, Mattson MP, Rao MS . (2004). Cellular lifespan and senescence signaling in embryonic stem cells. Aging Cell 3: 333–343.

    CAS  PubMed  Google Scholar 

  • Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124: 1283–1298.

    CAS  PubMed  Google Scholar 

  • Monaco III EA, Vallano ML . (2003). Cyclin-dependent kinase inhibitors: cancer killers to neuronal guardians. Curr Med Chem 10: 367–379.

    CAS  PubMed  Google Scholar 

  • Morgan DO . (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13: 261–291.

    CAS  PubMed  Google Scholar 

  • Muller-Tidow C, Ji P, Diederichs S, Potratz J, Baumer N, Kohler G et al. (2004). The cyclin A1–CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol 24: 8917–8928.

    PubMed  PubMed Central  Google Scholar 

  • Murphy M, Stinnakre M-G, Senamaud-Beaufort C, Winston NJ, Sweeney C, Kubelka M et al. (1997). Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet 15: 83–86.

    CAS  PubMed  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. (1996). Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720.

    CAS  PubMed  Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R et al. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35: 25–31.

    CAS  PubMed  Google Scholar 

  • Pagano M, Jackson PK . (2004). Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell 118: 535–538.

    CAS  PubMed  Google Scholar 

  • Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z et al. (2003). Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 22: 4794–4803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payton M, Chung G, Yakowec P, Wong A, Powers D, Xiong L et al. (2006). Discovery and evaluation of dual CDK1 and CDK2 inhibitors. Cancer Res 66: 4299–4308.

    CAS  PubMed  Google Scholar 

  • Pei XH, Bai F, Tsutsui T, Kiyokawa H, Xiong Y . (2004). Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 24: 6653–6664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL et al. (2006). Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 17: 2434–2442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prost S, Bellamy CO, Clarke AR, Wyllie AH, Harrison DJ . (1998). p53-independent DNA repair and cell cycle arrest in embryonic stem cells. FEBS Lett 425: 499–504.

    CAS  PubMed  Google Scholar 

  • Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP et al. (1999). Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in b-islet cell hyperplasia. Nat Genet 22: 44–52.

    CAS  PubMed  Google Scholar 

  • Reddy HK, Mettus RV, Rane SG, Grana X, Litvin J, Reddy EP . (2005). Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res 65: 10174–10178.

    CAS  PubMed  Google Scholar 

  • Ribas J, Boix J, Meijer L . (2006). (R)-roscovitine (CYC202, Seliciclib) sensitizes SH-SY5Y neuroblastoma cells to nutlin-3-induced apoptosis. Exp Cell Res 312: 2394–2400.

    CAS  PubMed  Google Scholar 

  • Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P et al. (1998). Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev 12: 2469–2474.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Puebla ML, Miliani de Marval PL, LaCava M, Moons DS, Kiyokawa H, Conti CJ . (2002). Cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation. Am J Pathol 161: 405–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA et al. (2006). Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med 12: 1056–1064.

    CAS  PubMed  Google Scholar 

  • Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q et al. (1996). Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 14: 482–486.

    CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev 14: 3037–3050.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria D, Ortega S . (2006). Cyclins and CDKs in development and cancer: lessons from genetically modified mice. Front Biosci 11: 1164–1188.

    CAS  PubMed  Google Scholar 

  • Sauter ER, Nesbit M, Litwin S, Klein-Szanto AJ, Cheffetz S, Herlyn M . (1999). Antisense cyclin D1 induces apoptosis and tumor shrinkage in human squamous carcinomas. Cancer Res 59: 4876–4881.

    CAS  PubMed  Google Scholar 

  • Savatier P, Huang S, Szekely L, Wiman KG, Samarut J . (1994). Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9: 809–818.

    CAS  PubMed  Google Scholar 

  • Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J . (1996). Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12: 309–322.

    CAS  PubMed  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413: 86–91.

    CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    CAS  Google Scholar 

  • Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630.

    CAS  PubMed  Google Scholar 

  • Stanelle J, Putzer BM . (2006). E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 12: 177–185.

    CAS  PubMed  Google Scholar 

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J et al. (2002). Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21: 8320–8333.

    CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (2003). Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3: 233–245.

    CAS  PubMed  Google Scholar 

  • Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A et al. (1999). Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol Cell Biol 19: 7011–7019.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H et al. (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53.

    CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    CAS  PubMed  Google Scholar 

  • Wadhwa R, Kaul SC, Mitsui Y . (1994). Cellular mortality to immortalization: mortalin. Cell Struct Funct 19: 1–10.

    CAS  PubMed  Google Scholar 

  • Wesierska-Gadek J, Schreiner T, Gueorguieva M, Ranftler C . (2006). Phenol red reduces ROSC-mediated cell cycle arrest and apoptosis in human MCF-7 cells. J Cell Biochem 98: 1367–1379.

    CAS  PubMed  Google Scholar 

  • Williams O, Gil-Gomez G, Norton T, Kioussis D, Brady HJ . (2000). Activation of Cdk2 is a requirement for antigen-mediated thymic negative selection. Eur J Immunol 30: 709–713.

    CAS  PubMed  Google Scholar 

  • Yu Q, Geng Y, Sicinski P . (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    CAS  PubMed  Google Scholar 

  • Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y et al. (2006). Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9: 23–32.

    CAS  PubMed  Google Scholar 

  • Zhou P, Jiang W, Zhang YJ, Kahn SM, Schieren I, Santella RM et al. (1995). Antisense to cyclin D1 inhibits growth and reverses the transformed phenotype of human esophageal cancer cells. Oncogene 11: 571–580.

    CAS  PubMed  Google Scholar 

  • Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov AV et al. (2002). Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev 16: 2923–2934.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Kaldis laboratory and MCGP for support and discussion. We are also thankful to Satya Ande, Shuhei Kotoshiba, Weimin Li, Kasim Diril and Padmakumar VC for comments on the manuscript. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Kaldis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthet, C., Kaldis, P. Cell-specific responses to loss of cyclin-dependent kinases. Oncogene 26, 4469–4477 (2007). https://doi.org/10.1038/sj.onc.1210243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210243

Keywords

This article is cited by

Search

Quick links