Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Implications of micro-RNA profiling for cancer diagnosis

Abstract

Micro-RNAs (miRNAs) are a large class of small non-coding RNAs that regulate protein expression in eucaryotic cells. Initially believed to be unique to the nematode Caenorhabditis elegans, miRNAs are now recognized to be important gene regulatory elements in multicellular organisms and have been implicated in a variety of disease processes, including cancer. Advances in expression technologies have facilitated the high-throughput analysis of small RNAs, identifying novel miRNAs and showing that these genes may be aberrantly expressed in various human tumors. These studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis, and may ultimately be useful in the management of human cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    CAS  PubMed  Google Scholar 

  • Ambros V, Horvitz HR . (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226: 409–416.

    CAS  PubMed  Google Scholar 

  • Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR . (2004). Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10: 1813–1819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I et al. (2004). MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14: 2486–2494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    CAS  PubMed  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37: 766–770.

    CAS  PubMed  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. (2003). Dicer is essential for mouse development. Nat Genet 35: 215–217.

    CAS  PubMed  Google Scholar 

  • Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC . (2005). miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204: 280–285.

    CAS  PubMed  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36.

    CAS  PubMed  Google Scholar 

  • Brigden ML, Murray N . (1999). Improving survival in metastatic carcinoma of unknown origin. Postgrad Med 105: 63–64, 67–74.

    CAS  PubMed  Google Scholar 

  • Caldas C, Brenton JD . (2005). Sizing up miRNAs as cancer genes. Nat Med 11: 712–714.

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 33: 167–173.

    CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    CAS  PubMed  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.

    CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004a). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004b). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.

    PubMed  PubMed Central  Google Scholar 

  • Chen CZ . (2005). MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353: 1768–1771.

    CAS  PubMed  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  PubMed  Google Scholar 

  • Croce CM, Calin GA . (2005). miRNAs, cancer, and stem cell division. Cell 122: 6–7.

    CAS  PubMed  Google Scholar 

  • Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. (2006). The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.

    CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627–3632.

    CAS  PubMed  Google Scholar 

  • Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279: 52361–52365.

    CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    CAS  PubMed  Google Scholar 

  • Gregory RI, Shiekhattar R . (2005). MicroRNA biogenesis and cancer. Cancer Res 65: 3509–3512.

    CAS  PubMed  Google Scholar 

  • Hall PA, Russell SH . (2005). New perspectives on neoplasia and the RNA world. Hematol Oncol 23: 49–53.

    PubMed  Google Scholar 

  • Hammond SM . (2006). MicroRNAs as oncogenes. Curr Opin Genet Dev 16: 4–9.

    CAS  PubMed  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628–9632.

    CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005a). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005b). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvagner G, Simard MJ, Mello CC, Zamore PD . (2004). Sequence-specific inhibition of small RNA function. PLoS Biol 2: E98.

    PubMed  PubMed Central  Google Scholar 

  • Hwang HW, Mendell JT . (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94: 776–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19: 489–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasashima K, Nakamura Y, Kozu T . (2004). Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322: 403–410.

    CAS  PubMed  Google Scholar 

  • Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH . (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3: 27–29.

    CAS  PubMed  Google Scholar 

  • Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S et al. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207: 243–249.

    CAS  PubMed  Google Scholar 

  • Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B . (2004). Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res 32: e3.

    PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T . (2003). New microRNAs from mouse and human. RNA 9: 175–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP . (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862.

    CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V . (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864.

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    CAS  PubMed  Google Scholar 

  • Lee YS, Kim HK, Chung S, Kim KS, Dutta A . (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280: 16635–16641.

    CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    CAS  PubMed  Google Scholar 

  • Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX et al. (2005). An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33: e17.

    PubMed  PubMed Central  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP . (2003). Vertebrate microRNA genes. Science 299: 1540.

    CAS  PubMed  Google Scholar 

  • Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101: 9740–9744.

    CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    CAS  PubMed  Google Scholar 

  • McManus MT . (2003). MicroRNAs and cancer. Semin Cancer Biol 13: 253–258.

    CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Dorsett Y, Tuschl T . (2004). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10: 544–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meltzer PS . (2005). Cancer genomics: small RNAs with big impacts. Nature 435: 745–746.

    CAS  PubMed  Google Scholar 

  • Mendell JT . (2005). MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4: 1179–1184.

    CAS  PubMed  Google Scholar 

  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39: 167–169.

    CAS  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Miska EA . (2005). How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15: 563–568.

    CAS  PubMed  Google Scholar 

  • Morris JPt, McManus MT . (2005). Slowing down the Ras lane: miRNAs as tumor suppressors? Sci STKE 2005: pe41.

    PubMed  Google Scholar 

  • Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K . (2005). Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202: 261–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ . (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102: 12135–12140.

    CAS  PubMed  Google Scholar 

  • Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S et al. (2006). A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3: 41–46.

    CAS  PubMed  Google Scholar 

  • Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z . (2004). Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1: 155–161.

    CAS  PubMed  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    PubMed  Google Scholar 

  • Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G et al. (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13: 497–508.

    CAS  PubMed  Google Scholar 

  • Pao W, Miller VA . (2005). Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23: 2556–2568.

    CAS  PubMed  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–1672.

    CAS  PubMed  Google Scholar 

  • Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M et al. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98: 15149–15154.

    CAS  PubMed  Google Scholar 

  • Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM . (2005). Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11: 1737–1744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    CAS  PubMed  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684.

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Jiang J, Liu Q, Yang L . (2004). A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32: e43.

    PubMed  PubMed Central  Google Scholar 

  • Service RF . (2006). Gene sequencing. The race for the $1000 genome. Science 311: 1544–1546.

    CAS  PubMed  Google Scholar 

  • Shi R, Chiang VL . (2005). Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39: 519–525.

    CAS  PubMed  Google Scholar 

  • Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R et al. (2005). An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11: 1461–1470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slack FJ, Weidhaas JB . (2006). MicroRNAs as a potential magic bullet in cancer. Future Oncol 2: 73–82.

    CAS  PubMed  Google Scholar 

  • Stegmaier K, Ross KN, Colavito SA, O’Malley S, Stockwell BR, Golub TR . (2004). Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 36: 257–263.

    CAS  PubMed  Google Scholar 

  • Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270: 488–498.

    CAS  PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.

    CAS  PubMed  Google Scholar 

  • Thomson JM, Parker J, Perou CM, Hammond SM . (2004). A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1: 47–53.

    CAS  PubMed  Google Scholar 

  • Varmus H, Pao W, Politi K, Podsypanina K,, Du YC . (2005). Oncogenes come of age. Cold Spring Harb Symp Quant Biol 70: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    CAS  PubMed  Google Scholar 

  • Weinstein IB . (2002). Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 297: 63–64.

    CAS  PubMed  Google Scholar 

  • Xu P, Guo M, Hay BA . (2004). MicroRNAs and the regulation of cell death. Trends Genet 20: 617–624.

    CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V E Velculescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummins, J., Velculescu, V. Implications of micro-RNA profiling for cancer diagnosis. Oncogene 25, 6220–6227 (2006). https://doi.org/10.1038/sj.onc.1209914

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209914

Keywords

This article is cited by

Search

Quick links