Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling

Abstract

Neuroblastoma is a common childhood tumor comprising cases with rapid disease progression as well as spontaneous regression. Although numerous prognostic factors have been identified, risk evaluation in individual patients remains difficult. To define a reliable prognostic predictor and gene signatures characteristic of biological subgroups, we performed mRNA expression profiling of 68 neuroblastomas of all stages. Expression data were analysed using support vector machines (SVM-rbf), prediction analysis of microarrays (PAM), k-nearest neighbors (k-NN) algorithms and multiple decision trees. SVM-rbf performed best of all methods, and predicted recurrence of neuroblastoma with an accuracy of 85% (sensitivity 77%, specificity 94%). PAM identified a classifier of 39 genes reliably predicting outcome with an accuracy of 80%. In comparison, conventional risk stratification based on stage, age and MYCN-status only reached a predictive accuracy of 64%. Kaplan–Meier analysis using the PAM classifier indicated a 5-year survival of 20 versus 78% for patients with unfavorably versus favorably predicted neuroblastomas, respectively (P=0.0001). Significance analysis of microarrays (SAM) identified additional genes differentially expressed among subgroups. MYCN-amplification and high expression of NTRK1/TrkA demonstrated a strong association with specific gene expression patterns. Our data suggest that microarray-derived data in addition to traditional clinical factors will be useful for risk assessment and defining biological properties of neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AWD:

alive with disease

CR:

complete remission

EFS:

event-free survival

FDR:

false discovery rate

k-NN:

k-nearest neighbors

NED:

no evidence of disease

PAM:

prediction analysis of microarrays

SAM:

significance analysis of microarrays

SVM-rbf:

support vector machines with a radial basis function kernel

VGPR:

very good partial remission

References

  • Alaminos M, Mora J, Cheung NK, Smith A, Qin J, Chen L and Gerald WL . (2003). Cancer Res., 63, 4538–4546.

  • Berwanger B, Hartmann O, Bergmann E, Bernard S, Nielsen D, Krause M, Kartal A, Flynn D, Wiedemeyer R, Schwab M, Schafer H, Christiansen H and Eilers M . (2002). Cancer Cell, 2, 377–386.

  • Bown N, Cotterill S, Lastowska M, O'Neill S, Pearson AD, Plantaz D, Meddeb M, Danglot G, Brinkschmidt C, Christiansen H, Laureys G, Speleman F, Nicholson J, Bernheim A, Betts DR, Vandesompele J and Van Roy N . (1999). N. Engl. J. Med., 340, 1954–1961.

  • Brodeur GM . (2003). Nat. Rev. Cancer, 3, 203–216.

  • Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, de Bernardi B, Evans AE, Favrot M, Hedborg H, Kaneko M, Kemshead J, Lampert F, Lee REJ, Look ATh, Pearson AD, Philip T, Roald B, Sawada T, Seeger RC, Tsuchida Y and Voute PA . (1993). J. Clin. Oncol., 11, 1466–1477.

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE and Bishop JM . (1984). Science, 224, 1121–1124.

  • Caron H . (1995). Med. Pediatr. Oncol., 24, 215–221.

  • Chang CC and Lin CJ . (2001). Neural. Comput., 13, 2119–2147.

  • Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA and Tainsky MA . (2003). Nucleic Acids Res., 31, 3775–3781.

  • Elbaz N, Bedecs K, Masson M, Sutren M, Strosberg AD and Nahmias C . (2000). Mol. Endocrinol., 14, 795–804.

  • Godfried MB, Veenstra M, v Sluis P, Boon K, v Asperen R, Hermus MC, v Schaik BD, Voute TP, Schwab M, Versteeg R and Caron HN . (2002). Oncogene, 21, 2097–2101.

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD and Lander ES . (1999). Science, 286, 531–537.

  • Hiyama E, Hiyama K, Nishiyama M, Reynolds CP, Shay JW and Yokoyama T . (2003). J. Pediatr. Surg., 38, 1730–1734.

  • Hiyama E, Hiyama K, Yamaoka H, Sueda T, Reynolds CP and Yokoyama T . (2004). Pediatr. Surg. Int, 20, 33–38.

  • Katoh M . (2003). Int. J. Oncol., 23, 1219–1224.

  • Maris JM and Matthay KK . (1999). J. Clin. Oncol., 17, 2264–2279.

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB and Reynolds CP . (1999). N. Engl. J. Med., 341, 1165–1173.

  • Ntzani EE and Ioannidis JP . (2003). Lancet, 362, 1439–1444.

  • Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR and Louis DN . (2003). Cancer Res., 63, 1602–1607.

  • Ohira M, Morohashi A, Inuzuka H, Shishikura T, Kawamoto T, Kageyama H, Nakamura Y, Isogai E, Takayasu H, Sakiyama S, Suzuki Y, Sugano S, Goto T, Sato S and Nakagawara A . (2003). Oncogene, 22, 5525–5536.

  • Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A, Hirata T, Kubo H, Goto T, Yamada S, Yoshida Y, Fuchioka M, Ishii S and Nakagawara A . (2005). Cancer Cell, 7, 337–350.

  • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES and Golub TR . (2002). Nature, 415, 436–442.

  • Quinlan JR . (1993). Programs for Machine Learning. C4.5 Morgan Kaufmann: San Francicso, CA.

    Google Scholar 

  • Rosenwald A and Staudt LM . (2002). Semin. Oncol., 29, 258–263.

  • Schilling FH, Spix C, Berthold F, Erttmann R, Fehse N, Hero B, Klein G, Sander J, Schwarz K, Treuner J, Zorn U and Michaelis J . (2002). N. Engl. J. Med., 346, 1047–1053.

  • Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler S, Kern W, Hiddemann W, Eils R and Haferlach T . (2002). Proc. Natl. Acad. Sci. USA, 99, 10008–10013.

  • Schulte JH, Schramm A, Pressel T, Klein-Hitpass L, Kremens B, Eils J, Havers W and Eggert A . (2003). Klin. Padiatr., 215, 298–302.

  • Schwab M, Westermann F, Hero B and Berthold F . (2003). Lancet Oncol., 4, 472–480.

  • Scott D, Elsden J, Pearson A and Lunec J . (2003). Cancer Lett., 197, 81–86.

  • Simon R, Radmacher MD, Dobbin K and McShane LM . (2003). J. Natl. Cancer Inst., 95, 14–18.

  • Su WT, Alaminos M, Mora J, Cheung NK, La Quaglia MP and Gerald WL . (2004). Cancer Genet. Cytogenet., 154, 131–137.

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM and Kidd VJ . (2000). Nat. Med., 6, 529–535.

  • Thompson PM, Gotoh T, Kok M, White PS and Brodeur GM . (2003). Oncogene, 22, 1002–1011.

  • Tibshirani R, Hastie T, Narasimhan B and Chu G . (2002). Proc. Natl. Acad. Sci. USA, 99, 6567–6572.

  • Tusher VG, Tibshirani R and Chu G . (2001). Proc. Natl. Acad. Sci. USA, 98, 5116–5121.

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH and Bernards R . (2002). N. Engl. J. Med., 347, 1999–2009.

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F . (2002). Genome Biol., 3, RESEARCH0034.1–RESEARCH0034.11.

  • Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, Krasnoselsky AL, Cenacchi N, Catchpoole D, Berthold F, Schwab M and Khan J . (2004). Cancer Res., 64, 6883–6891.

  • Witten A and Frank E . (2002). Data Mining: Practical Machine Learning Tools and Techniques with Java Implemenations. Morgan Kaufmann: San Francicso, CA.

    Google Scholar 

  • Yamamoto K, Hanada R, Kikuchi A, Ichikawa M, Aihara T, Oguma E, Moritani T, Shimanuki Y, Tanimura M and Hayashi Y . (1998). J. Clin. Oncol., 16, 1265–1269.

Download references

Acknowledgements

We thank Frank Berthold and Thorsten Simon from the German Neuroblastoma Study Trial Office at the University Children's Hospital of Cologne for providing the clinical patient data as well as a part of the primary tumor material from the neuroblastoma tumor bank of the German competence network ‘Pediatric Oncology and Hematology’. This work was funded by a Grant from the Kind-Philipp Stiftung (to AE) and the German National Genome Network (BMBF/NGFN2) to AE and AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Eggert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, A., Schulte, J., Klein-Hitpass, L. et al. Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 24, 7902–7912 (2005). https://doi.org/10.1038/sj.onc.1208936

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208936

Keywords

This article is cited by

Search

Quick links