Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role?

Abstract

Hematopoietic stem cells (HSC) have a finite proliferative lifespan, based upon the limited number of times they can be serially transplanted in mice. Telomeres have been shown to shorten during the division of many normal somatic cells in humans, and the attrition of telomeres has been shown to ultimately cause replicative senescence in vitro for a number of different human cell strains. Whereas most human cell types have little to no detectable levels of telomerase activity, hematopoietic cells, including HSC, express low to moderate levels of telomerase, and yet telomeres shorten considerably during replicative aging of these cells. Here we consider the role telomerase may play in the hematopoietic system as well as the effect that over-expression of telomerase reverse transcriptase may have on the replicative capacity of hematopoietic stem cells during transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Ahmed S, Sheng H, Niu L, Henderson E . 1998 Genetics 150: 643–650

  • Allsopp RC, Cheshier S, Weissman IL . 2001 J. Exp. Med. 193: 917–924

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB . 1992 Proc. Natl. Acad. Sci. USA 89: 10114–10118

  • Bodnar AG, Kim NW, Effros RB, Chiu CP . 1996 Exp. Cell. Res. 228: 58–64

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE . 1998 Science 279: 349–352

  • Broccoli D, Young JW, de Lange T . 1995 Proc. Natl. Acad. Sci. USA 92: 9082–9086

  • Chang E, Harley CB . 1995 Proc. Natl. Acad. Sci. USA 92: 11190–11194

  • Cheshier SH, Morrison SJ, Liao X, Weissman IL . 1999 Proc. Natl. Acad. Sci. USA 96: 3120–3125

  • Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB, Lansdorp PM . 1996 Stem Cells 14: 239–248

  • Cohn M, Blackburn EH . 1995 Science 269: 396–400

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S . 1992 EMBO J. 11: 1921–1929

  • Effros RB . 1998 Am. J. Hum. Genet. 62: 1003–1007

  • Greider CW, Blackburn EH . 1985 Cell 43: 405–413

  • Greider CW, Blackburn EH . 1987 Cell 51: 887–898

  • Griffith JD, Comeau L, Rosenfeld S, Stansel RM, Bianchi A, Moss H, de Lange T . 1999 Cell 97: 503–514

  • Guerrini AM, Camponeschi B, Ascenzioni F, Piccolella E, Donini P . 1993 Hum. Mol. Genet. 2: 455–460

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . 1999 Nature 400: 464–468

  • Harle-Bachor C, Boukamp P . 1996 Proc. Natl. Acad. Sci. USA 93: 6476–6481

  • Harley CB, Futcher AB, Greider CW . 1990 Nature 345: 458–460

  • Harrison DE, Astle CM . 1982 J. Exp. Med. 156: 1767–1779

  • Harrison DE, Astle CM, Delaittre JA . 1978 J. Exp. Med. 147: 1526–1531

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC . 1990 Nature 346: 866–868

  • Hayflick L, Moorhead PS . 1961 Exp. Cell Res. 25: 585–621

  • Herbert B, Pitts AE, Baker SI, Hamilton SE, Wright WE, Shay JW, Corey DR . 1999 Proc. Natl. Acad. Sci. USA 96: 14276–14281

  • Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M . 1995 J. Immunol. 155: 3711–3715

  • Hooijberg E, Ruizendaal JJ, Snijders PJ, Kueter EW, Walboomers JM, Spits H . 2000 J. Immunol. 165: 4239–4245

  • Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD, Chiu CP . 1999 Nat. Genet. 21: 111–114

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW . 1994 Science 266: 2011–2015

  • Kipling D, Cooke HJ . 1990 Nature 347: 400–402

  • Kruk PA, Balajee AS, Rao KS, Bohr VA . 1996 Biochem. Biophys. Res. Commun. 224: 487–492

  • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB . 1992 J. Mol. Biol. 225: 951–960

  • Lingner J, Cooper JP, Cech TR . 1995 Science 269: 1533–1534

  • Mantell LL, Greider CW . 1994 EMBO J. 13: 3211–3217

  • McClintock B . 1941 Genetics 26: 234–282

  • McEachern MJ, Krauskopf A, Blackburn EH . 2000 Annu. Rev. Genet. 34: 331–358

  • Morrison SJ, Prowse KR, Ho P, Weissman IL . 1996 Immunity 5: 207–216

  • Niida H, Matsumoto T, Satoh H, Shiwa M, Tokutake Y, Furuichi Y, Shinkai Y . 1998 Nat. Genet. 19: 203–206

  • Notaro R, Cimmino A, Tabarini D, Rotoli B, Luzzatto L . 1997 Proc. Natl. Acad. Sci. USA 94: 13782–13785

  • Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE . 2001 Genes Dev. 15: 398–403

  • Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD . 2001 Nature 409: 633–637

  • Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM . 2001 Blood 98: 597–603

  • Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD . 2001 Proc. Natl. Acad. Sci. USA 98: 113–118

  • Singer MS, Gottschling DE . 1994 Science 266: 404–409

  • Stampfer MR, Bodnar A, Garbe J, Wong M, Pan A, Villeponteau B, Yaswen P . 1997 Mol. Biol. Cell 8: 2391–2405

  • Stoppler H, Hartmann DP, Sherman L, Schlegel R . 1997 J. Biol. Chem. 272: 13332–13337

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM . 1994 Proc. Natl. Acad. Sci. USA 91: 9857–9860

  • Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB . 1993 Am. J. Hum. Genet. 52: 661–667

  • Vaziri H, Squire JA, Pandita TK, Bradley G, Kuba RM, Zhang H, Gulyas S, Hill RP, Nolan GP, Benchimol S . 1999 Mol. Cell. Biol. 19: 2373–2379

  • von Zglinicki T, Saretzki G, Docke W, Lotze C . 1995 Exp. Cell. Res. 220: 186–193

  • Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW . 1997 Genes Dev. 11: 2801–2809

  • Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A, Chiu CP, Herron GS . 1999 J. Biol. Chem. 274: 26141–26148

  • Yasumoto S, Kunimura C, Kikuchi K, Tahara H, Ohji H, Yamamoto H, Ide T, Utakoji T . 1996 Oncogene 13: 433–439

Download references

Acknowledgements

We would like to thank Antonio Cozzio for helpful comments. We would like to thank the National Institutes of Health (grant #CA 86065 (ILW)) and the Irvington Institute for Immunological Research for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C Allsopp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allsopp, R., Weissman, I. Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role?. Oncogene 21, 3270–3273 (2002). https://doi.org/10.1038/sj.onc.1205314

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205314

Keywords

This article is cited by

Search

Quick links