Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Regulation of choline kinase activity by Ras proteins involves Ral–GDS and PI3K

Abstract

Ras proteins are molecular switches that control signaling pathways critical in the onset of a variety of human cancers. The signaling pathways activated by Ras proteins are those controlled by its direct effectors such as the serine-threonine protein kinase Raf-1, the exchange factor for other GTPases Ral–GDS, and the lipid kinase PI3K. As a consequence of Ras activation, a number of additional enzymes are affected, including several members of the serine-threonine intracellular proteins kinases as well as enzymes related to phospholipid metabolism regulation such as phospholipases A2 and D, and choline kinase. The precise mechanisms by which ras oncogenes impinge into these later molecules and their relevance to the onset of the carcinogenic process is still not fully understood. Here we have investigated the mechanism of regulation of choline kinase by Ras proteins and found no direct link between PLD and choline kinase activation. We provide evidence that Ras proteins regulate the activity of choline kinase through its direct effectors Ral–GDS and PI3K, while the Raf pathways seems to be not relevant in this process. The importance of Ras-dependent activation of choline kinase is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aguirre-Ghiso JA, Frankel P, Farias EF, Lu Z, Jiang H, Olsen A, Feig LA, de Kier Joffe EB, Foster DA . 1999 Oncogene 18: 4718–4725

  • Akasaka K, Tamada M, Wang F, Kariya K, Shima F, Kiauchi A, Yamamoto M, Shirouzu M, Yokoyama S, Kataoka T . 1996 J. Biol. Chem. 271: 5353–5360

  • Baldasare JJ, Jarpe MB, Alferes L, Raben DM . 1997 J. Biol. Chem. 272: 4911–4914

  • Barbacid M . 1987 Ann. Rev. Biochem. 56: 779–827

  • Barbadelli A, Basile ML, Audero E, Giordano S, Wennstromn S, Menard S, Comogolio PM, Ponzetto C . 1999 Oncogene 18: 1139–1146

  • Bernhared EJ, Stanbridge EJ, Gupta S, Gupta AK, Soto D, Bakanauskas VJ, Cerniglia GJ, Muschel RJ, McKenna WG . 2000 Cancer Res. 60: 6577–6600

  • Bhakoo KK, Williams SR, Florian CL, Land H, Noble M . 1996 Cancer Res. 56: 4630–4635

  • Bos JL . 1989 Cancer Res. 49: 4682–4689

  • Bos JL . 1997 Biochim. Biophys. Acta. 1333: 19–31

  • Bourdoulous S, Orend G, MacKenna DA, Pasqualini R, Ruoslahti E . 1998 J. Cell Biol. 143: 267–276

  • Colley WC, Sung T-C, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA . 1997 Curr. Biol. 7: 191–201

  • Crespo P, León J . 2000 CMLS 57: 1613–1636

  • Cuadrado A, Carnero A, Dolfi F, Jiménez B, Lacal JC . 1993 Oncogene 8: 2959–2968

  • de Certaines JD, Larsen VA, Podo F, Carpinelli G, Briot O, Henriksen O . 1993 NMR Biomed. 6: 345–365

  • Exton JH . 2000 Ann. NY. Acad. Sci. 905: 61–68

  • Friedman M, Tikoo A, Varga M, Murphy A, Nur-E-Kamal MS, Maruta H . 1994 J. Biol. Chem. 269: 30105–30108

  • Gangarosa LM, Sizemore N, Graves-deal R, Oldham SM, Der CJ, Coffey RJ . 1997 J. Biol. Chem. 272: 18926–18931

  • Gratas C, Powis G . 1993 Anticancer Res. 13: 1239–1244

  • Guillemain I, Exton JH . 1998 Biochim. Biophys. Acta. 1405: 161–170

  • Hernández-Alcoceba R, Fernández F, Lacal JC . 1999 Cancer Res. 59: 3112–3118

  • Hernández-Alcoceba R, Saniger L, Campos J, Nuñez MC, Khaless F, Gallo MA, Espinosa A, Lacal JC . 1997 Oncogene 15: 2289–2301

  • Hernández-Alcoceba R, del Peso L, Lacal JC . 2000 Cell. Mol. Life Sci. 57: 65–76

  • Jiménez B, del Peso L, Montaner S, Esteve P, Lacal JC . 1995 J. Cell. Biochem. 57: 141–149

  • Katz ME, McCormick F . 1997 Curr. Opinin. Gen. and Dev. 7: 75–79

  • Kerkhoff E, Fedrorov LM, Siefken R, Walter AO, Papadopoulos T, Rapp UR . 2000 Cell. Growth Differ. 11: 185–190

  • Kerkhoff E, Rapp UR . 1997 Mol. Cell. Biol. 17: 2576–2586

  • Lacal JC, Moscat J, Aaronson SA . 1987 Nature 330: 269–272

  • Lacal JC . 1990 Mol. Cell. Biol. 10: 333–340

  • Lacal JC . 2001 I Drugs. 4: 419–426

  • Lucas L, del Peso L, Rodríguez P, Penalva V, Lacal JC . 2000 Oncogene 19: 431–437

  • Lucas L, Hernández-Alcoceba R, Penalva V, Lacal JC . 2001 Oncogene 20: 1110–1117

  • Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY . 2000 Oncogene 19: 2739–2744

  • Macara IG . 1989 Mol. Cell. Biol. 9: 325–328

  • Malumbres M, Pellicer A . 1999 Rev. Oncología. 1: 66–76

  • Marshall MS . 1993 Trens Biochem. Sci. 18: 250–254

  • Montaner S, Perona R, Saniger L, Lacal JC . 1999 J. Biol. Chem. 274: 8506–8515

  • Moodie SA, Paris M, Villafranca E, Kirshmeier P, Willumsen BM, Wolfman A . 1995 Oncogene 11: 447–454

  • Moore SR, Rinoul RC, Walker TR, Chilvers ER, Haslett C, Sethi T . 1998 Cancer Res. 58: 5239–5247

  • Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ . 1998 J. Biol. Chem. 273: 200–206

  • Muller SM, Okan E, Jones P . 2000 Biochem. Biophys. Res. Commun. 270: 892–898

  • Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, Morishita Y . 1999 Jpn. J. Cancer Res. 90: 419–424

  • Rameh LE, Cantley LC . 1999 J. Biol. Chem. 274: 8347–8350

  • Ramírez de Molina A, Rodríguez-González A, Lacal JC . 2001a Int. J. Oncol. 19: 5–17

  • Ramírez de Molina A, Rodríguez-González A, Penalva V, Lucas L, Lacal JC . 2001b Biochem. Biophys. Res. Commun. 285: 873–879

  • Ratnam S, Kent C . 1995 Arch. Biochem. Biophys. 323: 313–322

  • Reich R, Blumenthal M, Liscovitch M . 1995 Clin. Exp. Metastasis. 13: 134–140

  • Rodenhuis S . 1992 Semin. Cancer. Biol. 3: 241–247

  • Rodríguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Pas P, Waterfield MD, Ridley A, Downward J . 1997 Cell 89: 457–467

  • Ruiz-Cabello J, Cohen JS . 1992 NMR Biomed. 5: 226–233

  • Sigal IS, Gibbs JB, D'Alouzo JS, Scolnick EM . 1986 Proc. Natl. Acad. Sci. USA 83: 4725–4729

  • Smith TAD, Bush C, Jameson C, Titley JC, Leach MO, Wilman DEV, McCready VR . 1993 NMR Biomed. 6: 318–323

  • Song JG, Pfeffer LM, Foster DA . 1991 Mol. Cell. Biol. 11: 4903–4908

  • Srivastava SK, Di Donato A, Lacal JC . 1989 Mol. Cell. Biol. 9: 1779–1783

  • Wang Z, Canagarajah BJ, Kassisa JC, Cobb MH, Young PR, Abdel-Meguid S, Adams JL, Goldsmith EJ . 1998 Structure 15: 1117–1128

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler M . 1995 Cell 80: 533–541

Download references

Acknowledgements

We gratefully thank Drs J Downward, P Crespo, MA Frohman and S Yamashita for kindly providing us with the correspondent genes mentioned in the text. This work was supported by Grant 2FD1997-1569 from CICYT, Grant 99/0817 from FIS, Grant 08.1/0045.1/98 from Consejería de Educación of Comunidad de Madrid, and a special Grant from Roche Diagnostics GmbH, Pharma Research Penzberg (Alemania). A. Ramírez de Molina is a fellow from Fondo de Investigación Sanitaria (Instituto de Salud Carlos III), grant BEFI 99/9125 (Ref. CPC/CLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Lacal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez de Molina, A., Penalva, V., Lucas, L. et al. Regulation of choline kinase activity by Ras proteins involves Ral–GDS and PI3K. Oncogene 21, 937–946 (2002). https://doi.org/10.1038/sj.onc.1205144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205144

Keywords

This article is cited by

Search

Quick links