Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

TC21 and Ras share indistinguishable transforming and differentiating activities

Abstract

Constitutively activated mutants of the Ras-related protein TC21/R-Ras2 cause tumorigenic transformation of NIH3T3 cells. However, unlike Ras, TC21 fails to bind to and activate the Raf-1 serine-threonine kinase. Thus, whereas Ras transformation is critically dependent on Raf-1 TC21 activity is promoted by activation of Raf-independent signaling pathways. In the present study, we have further compared the functions of Ras and TC21. First we determined the basis for the inability of TC21 to activate Raf-1. Whereas Ras can interact with the two distinct Ras-binding sequences in NH2-terminus of Raf-1, designated RBS1 and Raf-Cys, TC21 could only bind Raf-Cys. Thus, the inability of TC21 to bind to RBS1 may prevent it from promoting the translocation of Raf-1 to the plasma membrane. Second, we found that TC21 is an activator of the JNK and p38, but not ERK, mitogen-activated protein kinase cascades and that TC21 transforming activity was dependent on Rac function. Thus, like Ras, TC21 may activate a Rac/JNK pathway. Third, we determined if TC21 could cause the same biological consequences as Ras in three distinct cell types. Like Ras, activated TC21 caused transformation of RIE-1 rat intestinal epithelial cells and terminal differentiation of PC12 pheochromocytoma cells. Finally, activated TC21 blocked serum starvation-induced differentiation of C2 myoblasts, whereas dominant negative TC21 greatly accelerated this differentiation process. Therefore, TC21 and Ras share indistinguishable biological activities in all cell types that we have evaluated. These results support the importance of Raf-independent pathways in mediating the actions of Ras and TC21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bar-Sagi D and Feramisco JR. . 1985 Cell 42: 841–848.

  • Barbacid M. . 1987 Annu. Rev. Biochem. 56: 779–827.

  • Boguski MS and McCormick F. . 1993 Nature 366: 643–654.

  • Bollag G and McCormick F. . 1992 Cancer Biol. 3: 199–208.

  • Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G et al. 1985 Mol. Cell. Biol. 5: 1400–1407.

  • Bos JL. . 1989 Cancer Res. 49: 4682–4689.

  • Bourne HR, Sanders DA and McCormick F. . 1990 Nature 349: 117–126.

  • Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S et al. 1995 J. Biol. Chem. 270: 9809–9812.

  • Buss JE, Solski PA, Schaeffer JP, MacDonald MJ and Der CJ. . 1989 Science 243: 1600–1603.

  • Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ and Der CJ. . 1998 Oncogene in press.

  • Campbell-Burk SL and Carpenter JW. . 1995 Methods Enzymol. 255: 3–13.

  • Carboni JM, Yan N, Cox AD, Bustelo X, Graham SM et al. 1995 Oncogene 10: 1905–1913.

  • Chan AML, Miki T, Meyers KA and Aaronson SA. . 1994 Proc. Natl. Acad. Sci. USA 91: 7558–7562.

  • Chantry D, Vojtek A, Kashishian A, Holtzman DA, Wood C et al. 1997 J. Biol. Chem. 272: 19236–19241.

  • Clark GJ, Cox AD, Graham SM and Der CJ. . 1995 Methods Enzymol. 255: 395–412.

  • Clark GJ and Der CJ. . 1993 In: GTPases in Biology I: Oncogenic activation of Ras proteins. Dickey BF and Birnbaumer L. (eds).. Springer Verlag: Berlin. pp. 259–288.

    Google Scholar 

  • Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers-Graham K et al. 1997a J. Biol. Chem. 272: 20990–20993.

  • Clark GJ, Kinch MS, Gilmer TM, Burridge K and Der CJ. . 1996 Oncogene 12: 169–176.

  • Clark GJ, Westwick JK and Der CJ. . 1997b J. Biol. Chem. 272: 1677–1681.

  • Cowley S, Paterson H, Kemp P and Marshall CJ. . 1994 Cell 77: 841–852.

  • Cox AD, Brtva TR, Lowe DG and DER CJ. . 1994 Oncogene 9: 3281–3288.

  • Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM et al. 1992 Science 257: 1404–1407.

  • Drugan JK, Khosravi-Far R, White MA, Der CJ, Sung Y-J et al. 1996 J. Biol. Chem. 271: 233–237.

  • Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ et al. 1997 J. Biol. Chem. 272: 24113–24116.

  • Frost JA, Xu S, Hutchison MR, Marcus S and Cobb MH. . 1996 Mol. Cell. Biol. 16: 3707–3713.

  • Galson DL, Hensold JO, Bishop TR, Schalling M, D'Andrea AD et al. 1993 Mol. Cell. Biol. 13: 2929–2941.

  • Ghosh S and Bell RM. . 1994 J. Biol. Chem. 269: 30785–30788.

  • Graham SM, Cox AD, Drivas G, Rush MR, D'Eustachio P et al. 1994 Mol. Cell. Biol. 14: 4108–4115.

  • Graham SM, Vojtek AB, Huff SY, Cox AD, Clark GJ et al. 1996 Mol. Cell. Biol. 16: 6132–6140.

  • Han L and Colicelli J. . 1995 Mol. Cell Biol. 15: 1318–1323.

  • Hill CS, Marais R, John S, Wynne J, Dalton S et al. 1993.Cell 73: 385–406.

  • Hill CS and Treisman R. . 1995 Cell 80: 199–211.

  • Hofer F, Fields S, Schneider C and Martin GS. . 1994 Proc. Natl. Acad. Sci. USA 91: 11089–11093.

  • Howe LR, Leevers SJ, Gómez N, Nakielny S, Cohen P et al. 1992 Cell 71: 335–342.

  • Hu C, Kariya K, Tamada M, Akasaka K, Shirouzu M et al. 1995 J. Biol. Chem. 270: 30274–30277.

  • Huff SY, Quilliam LA, Cox AD and Der CJ. . 1997 Oncogene 14: 133–143.

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ et al. 1997 Science 275: 1649–1652.

  • Joneson T, White MA, Wigler MH and Bar-Sagi D. . 1996 Science 271: 810–812.

  • Khosravi-Far R, Campbell S, Rossman KL and Der CJ. . 1998 Adv. Cancer Res. 72: 57–107.

  • Khosravi-Far R, Solski PA, Kinch MS, Burridge K and Der CJ. . 1995 Mol. Cell. Biol. 15: 6443–6453.

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M et al. 1996 Mol. Cell. Biol. 16: 3923–3933.

  • Kikuchi A, Demo SD, Ye Z-H, Chen Y-W and Williams LT. . 1994 Mol. Cell. Biol. 14: 7483–7491.

  • Kimmelman A, Tolkacheva T, Lorinzi MV, Osada M and Chan AM-L. . 1997 Oncogene 15: 2675–2685.

  • Kolch W, Heidecker G, Lloyd P and Rapp UR. . 1991 Nature 349: 426–428.

  • Kong Y, Johnson SE, Taparowsky EJ and Konieczny SF. . 1995 Mol. Cell. Biol. 15: 5205–5213.

  • Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M et al. 1996 J. Biol. Chem. 271: 607–610.

  • Kyriakis JM, App H, Zhang X-F, Banerjee P, Brautigan DL et al. 1992 Nature 358: 417–421.

  • Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ and Johnson GL. . 1993 Science 260: 315–319.

  • Leevers SJ, Paterson HF and Marshall CJ. . 1994 Nature 369: 411–414.

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S et al. 1994 Science 265: 966–970.

  • Marshall CJ. . 1995 Cell 80: 179–185.

  • Marshall MS. . 1993 Trends Biochem. Sci. 18: 250–254.

  • Matsumoto K, Asano T and Endo T. . 1997 Oncogene 15: 2409–2417.

  • Mayo MW, Wang C-Y, Cogswell PC, Rogers-Graham KS, Lowe SW et al. 1997 Science 278: 1812–1815.

  • Miller A-F, Halkides CJ and Redfield AJ. . 1993 Biochem. 32: 7367–7376.

  • Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B et al. 1994 Science 266: 1719–1723.

  • Moodie SA, Willumsen BM, Weber MJ and Wolfman A. . 1993 Science 260: 1658–1661.

  • Morrison DK and Cutler Jr, RE. . 1997 Curr. Opin. Cell Biol. 9: 174–179.

  • Noda M, Ko M, Ogura A, Liu D-G, Amano T et al. 1985 Nature 318: 73–75.

  • Oldham SM, Clark GJ, Gangarosa LM, Coffey Jr, RJ and Der CJ. . 1996 Proc. Natl. Acad. Sci. USA 93: 6924–6928.

  • Oldham SM, Cox AD, Reynolds ER, Sizemore NS, Coffey Jr, RJ et al. 1998 Oncogene in press.

  • Olsen EN, Spizz G and Tainsky MA. . 1987 Mol. Cell. Biol. 7: 2104–2111.

  • Olson MF, Ashworth A and Hall A. . 1995 Science 269: 1270–1272.

  • Peterson SN, Trabalzini L, Brtva TR, Fischer T, Altschuler DL et al. 1996 J. Biol. Chem. 271: 29903–29908.

  • Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF et al. 1995 Oncogene 10: 2289–2296.

  • Qiu R-G, Abo A, McCormick F and Symons M. . 1997 Mol. Cell. Biol. 17: 3449–3458.

  • Qiu R-G, Chen J, Kirn D, McCormick F and Symons M. . 1995a Nature 374: 457–459.

  • Qiu R-G, Chen J, McCormick F and Symons M. . 1995b Proc. Natl. Acad. Sci. USA 92: 11781–11785.

  • Quilliam LA, Khosravi-Far R, Huff SY and Der CJ. . 1995 BioEssays. 17: 395–404.

  • Ramocki MB, Johnson SE, White MA, Ashendel CL, Konieczny SF et al. 1997 Mol. Cell. Biol. 17: 3547–3555.

  • Reuter CWM, Catling AD, Jelinek T and Weber MJ. . 1995 J. Biol. Chem. 270: 7644–7655.

  • Rey I, Taylor-Harris P, van Erp H and Hall A. . 1994 Oncogene 9: 685–692.

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I et al. 1994 Nature 370: 527–532.

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D et al. 1997 Cell 89: 457–467.

  • Russell M, Lange-Carter CA and Johnson GL. . 1995 J. Biol. Chem. 270: 11757–11760.

  • Saez R, Chan AM-L, Miki T and Aaronson SA. . 1994 Oncogene 9: 2977–2982.

  • Spaargaren M and Bischoff JR. . 1994 Proc. Natl. Acad. Sci. USA 91: 12609–12613.

  • Stanton Jr VP, Nichols DW, Laudano AP and Cooper GM. . 1989 Mol. Cell. Biol. 9: 639–647.

  • Stokoe D, Macdonald SG, Cadwallader K, Symons M and Hancock JF. . 1994 Science 264: 1463–1467.

  • Sulciner DJ, Irani K, Yu Z-X, Ferrans VJ, Goldschmidt-Clermont P et al. 1996 Mol. Cell. Biol. 16: 7115–7121.

  • Van Aelst L, Barr M, Marcus S, Polverino A and Wigler M. . 1993 Proc. Natl. Acad. Sci. USA 90: 6213–6217.

  • Van Aelst L, White MA and Wigler MH. . 1994 Cold Spring Harbor Symp. Quant. Biol. 59: 181–186.

  • Vojtek AB, Hollenberg SM and Cooper JA. . 1993 Cell 74: 205–214.

  • Wang H-G, Millan JA, Cox AD, Der CJ, Rapp UR et al. 1995 J. Cell Biol. 129: 1103–1114.

  • Warne PH, Viciana PR and Downward J. . 1993 Nature 364: 352–355.

  • Westwick JK and Brenner DA. . 1995 Methods Enzymol. 255: 342–360.

  • Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M et al. 1994 Proc. Natl. Acad. Sci. USA 91: 6030–6034.

  • Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L et al. 1997 Mol. Cell. Biol. 17: 1324–1335.

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L et al. 1995 Cell 80: 533–541.

  • Wolthuis RM, Bauer B, van't Veer LJ, de Vries-Smits AM, Cool RH et al. 1996 Oncogene 13: 353–362.

  • Wood KW, Qi H, D'Arcangelo G, Armstrong RC, Roberts TM et al. 1993 Proc. Natl. Acad. Sci. USA 90: 5016–5020.

  • Zhang X, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ et al. 1993 Nature 364: 308–313.

  • Zhang Z, Vuori K, Wang H-G, Reed JC and Ruoslahti E. . 1996 Cell 85: 61–69.

  • Zheng C-F and Guan K-L. . 1994 EMBO J. 13: 1123–1131.

Download references

Acknowledgements

We thank Que Lambert, Sarah Johnson and Deverick Anderson for valuable technical assistance and Jennifer Parrish for figure and manuscript preparation. This work was supported by Public Health Service grants to SLC (CA64569 and CA70308) and CJD (CA42978, CA55008 and CA63071), SMG was supported by an American Association for Women in Science fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, S., Oldham, S., Martin, C. et al. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene 18, 2107–2116 (1999). https://doi.org/10.1038/sj.onc.1202517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202517

Keywords

This article is cited by

Search

Quick links