Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice

Abstract

It has been previously suggested that oxytocin (Oxt) may act as a natural antipsychotic. To test this hypothesis, we investigated whether disruption of the oxytocin gene (Oxt−/−) made mice more susceptible to the psychosis-related effects of amphetamine (Amp), apomorphine (Apo) and phencyclidine (PCP). We examined drug-induced changes in the prepulse inhibition (PPI) of the startle reflex, a measure of sensorimotor gating deficits characteristic of several psychiatric and neurological disorders, including schizophrenia. We found that treatment with Amp, Apo and PCP all had effects on PPI. However, in Oxt−/− mice, but not Oxt+/+ mice, PCP treatment resulted in large PPI deficits. As PCP is a noncompetitive N-methyl-D-aspartic acid receptor antagonist, these findings suggest that the absence of Oxt alters the glutamatergic component of the PPI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Braff DL, Grillon C, Geyer MA . Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 1992; 49: 206–215.

    Article  CAS  PubMed  Google Scholar 

  2. Geyer MA, Swerdlow NR, Mansbach RS, Braff DL . Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 1990; 25: 485–498.

    Article  CAS  PubMed  Google Scholar 

  3. Braff DL, Swerdlow NR, Geyer MA . Gating and habituation deficits in the schizophrenia disorders. Clin Neurosci 1995; 3: 131–139.

    CAS  PubMed  Google Scholar 

  4. Bolino F, Di Michele V, Di Cicco L, Manna V, Daneluzzo E, Casacchia M . Sensorimotor gating and habituation evoked by electro-cutaneous stimulation in schizophrenia. Biol Psychiatry 1994; 36: 670–679.

    Article  CAS  PubMed  Google Scholar 

  5. Grillon C, Ameli R, Charney DS, Krystal J, Braff D . Startle gating deficits occur across prepulse intensities in schizophrenic patients. Biol Psychiatry 1992; 32: 939–943.

    Article  CAS  PubMed  Google Scholar 

  6. Kumari V, Soni W, Sharma T . Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry 1999; 156: 1046–1051.

    CAS  PubMed  Google Scholar 

  7. Weike AI, Bauer U, Hamm AO . Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. Biol Psychiatry 2000; 47: 61–70.

    Article  CAS  PubMed  Google Scholar 

  8. Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL . Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry 2006; 63: 1325–1335.

    Article  PubMed  Google Scholar 

  9. Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL . A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry 1993; 33: 298–301.

    Article  CAS  PubMed  Google Scholar 

  10. Schall U, Schon A, Zerbin D, Eggers C, Oades RD . Event-related potentials during an auditory discrimination with prepulse inhibition in patients with schizophrenia, obsessive-compulsive disorder and healthy subjects. Int J Neurosci 1996; 84: 15–33.

    Article  CAS  PubMed  Google Scholar 

  11. Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR . Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease. J Neurol Neurosurg Psychiatry 1995; 58: 192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith SJ, Lees AJ . Abnormalities of the blink reflex in Gilles de la Tourette syndrome. J Neurol Neurosurg Psychiatry 1989; 52: 895–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M . Sensorimotor gating in boys with Tourette's syndrome and ADHD: preliminary results. Biol Psychiatry 1996; 39: 33–41.

    Article  CAS  PubMed  Google Scholar 

  14. Swerdlow NR, Karban B, Ploum Y, Sharp R, Geyer MA, Eastvold A . Tactile prepuff inhibition of startle in children with Tourette's syndrome: in search of an ‘fMRI-friendly’ startle paradigm. Biol Psychiatry 2001; 50: 578–585.

    Article  CAS  PubMed  Google Scholar 

  15. Swerdlow NR, Geyer MA, Braff DL . Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 2001; 156: 194–215.

    Article  CAS  Google Scholar 

  16. Koch M, Schnitzler HU . The acoustic startle response in rats--circuits mediating evocation, inhibition and potentiation. Behav Brain Res 1997; 89: 35–49.

    Article  CAS  PubMed  Google Scholar 

  17. Swerdlow NR, Braff DL, Geyer MA . Cross-species studies of sensorimotor gating of the startle reflex. Ann NY Acad Sci 1999; 877: 202–216.

    Article  CAS  PubMed  Google Scholar 

  18. Caldwell HK, Young III WS . Oxytocin and vasopressin: genetics and behavioral implications. In: Lim R (ed). Neuroactive Proteins and Peptides. Springer: New York, 2006, pp 573–607.

    Google Scholar 

  19. Ludwig M . Dendritic release of vasopressin and oxytocin. J Neuroendocrinol 1998; 10: 881–895.

    Article  CAS  PubMed  Google Scholar 

  20. Hirasawa M, Schwab Y, Natah S, Hillard CJ, Mackie K, Sharkey KA et al. Dedritically release transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. J Physiol 2004; 559: 611–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landgraf R, Neumann ID . Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 2004; 25: 150–176.

    Article  CAS  PubMed  Google Scholar 

  22. Morris JF, Ludwig M . Magnocellular dendrites: prototypic receiver/transmitters. J Neuroendocrinol 2004; 16: 403–408.

    Article  CAS  PubMed  Google Scholar 

  23. Beckmann H, Lang RE, Gattaz WF . Vasopressin—oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls. Psychoneuroendocrinology 1985; 10: 187–191.

    Article  CAS  PubMed  Google Scholar 

  24. Leckman JF, Goodman WK, North WG, Chappell PB, Price LH, Pauls DL et al. Elevated cerebrospinal fluid levels of oxytocin in obsessive-compulsive disorder. Comparison with Tourette's syndrome and healthy controls. Arch Gen Psychiatry 1994; 51: 782–792.

    CAS  PubMed  Google Scholar 

  25. Glovinsky D, Kalogeras KT, Kirch DG, Suddath R, Wyatt RJ . Cerebrospinal fluid oxytocin concentration in schizophrenic patients does not differ from control subjects and is not changed by neuroleptic medication. Schizophr Res 1994; 11: 273–276.

    Article  CAS  PubMed  Google Scholar 

  26. Uvnas-Moberg K, Alster P, Svensson TH . Amperozide and clozapine but not haloperidol or raclopride increase the secretion of oxytocin in rats. Psychopharmacology (Berl) 1992; 109: 473–476.

    Article  CAS  Google Scholar 

  27. Feifel D, Reza T . Oxytocin modulates psychotomimetic-induced deficits in sensorimotor gating. Psychopharmacology (Berl) 1999; 141: 93–98.

    Article  CAS  Google Scholar 

  28. Bujanow W . Letter: is oxytocin an anti-schizophrenic hormone? Can Psychiatr Assoc J 1974; 19: 323.

    Article  CAS  PubMed  Google Scholar 

  29. Martinez ZA, Halim ND, Oostwegel JL, Geyer MA, Swerdlow NR . Ontogeny of phencyclidine and apomorphine-induced startle gating deficits in rats. Pharmacol Biochem Behav 2000; 65: 449–457.

    Article  CAS  PubMed  Google Scholar 

  30. Varty GB, Walters N, Cohen-Williams M, Carey GJ . Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. Eur J Pharmacol 2001; 424: 27–36.

    Article  CAS  PubMed  Google Scholar 

  31. Anis NA, Berry SC, Burton NR, Lodge D . The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79: 565–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young III WS, Shepard E, Amico J, Hennighausen L, Wagner KU, LaMarca ME et al. Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J Neuroendocrinol 1996; 8: 847–853.

    Article  CAS  PubMed  Google Scholar 

  33. Yee BK, Chang DL, Feldon J . The Effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 2004; 29: 1865–1877.

    Article  CAS  PubMed  Google Scholar 

  34. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M et al. The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 1999; 19: 4627–4633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crawley JN, Paylor R . A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 1997; 31: 197–211.

    Article  CAS  PubMed  Google Scholar 

  36. Allen RM, Young SJ . Phencyclidine-induced psychosis. Am J Psychiatry 1978; 135: 1081–1084.

    Article  CAS  PubMed  Google Scholar 

  37. Davies BM, Beech HR . The effect of 1-arylcylohexylamine (sernyl) on twelve normal volunteers. J Ment Sci 1960; 106: 912–924.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen BD, Rosenbaum G, Luby ED, Gottlieb JS . Comparison of phencyclidine hydrochloride (sernyl) with other drugs. Simulation of schizophrenic performance with phencyclidine hydrochloride (sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (amytal) sodium; II. Symbolic and sequential thinking. Arch Gen Psychiatry 1962; 6: 395–401.

    Article  CAS  PubMed  Google Scholar 

  39. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  PubMed  Google Scholar 

  40. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996; 14: 301–307.

    Article  CAS  PubMed  Google Scholar 

  41. Morris BJ, Cochran SM, Pratt JA . PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 2005; 5: 101–106.

    Article  CAS  PubMed  Google Scholar 

  42. Boeijinga PH, Soufflet L, Santoro F, Luthringer R . Ketamine effects on CNS responses assessed with MEG/EEG in a passive auditory sensory-gating paradigm: an attempt for modelling some symptoms of psychosis in man. J Psychopharmacol 2007; 21: 321–337.

    Article  CAS  PubMed  Google Scholar 

  43. van Berckel BN, Oranje B, Van Ree JM, Verbaten MN, Kahn RS . The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology (Berl) 1998; 137: 271–281.

    Article  CAS  Google Scholar 

  44. Oranje B, Gispen-de Wied CC, Verbaten MN, Kahn RS . Modulating sensory gating in healthy volunteers: the effects of ketamine and haloperidol. Biol Psychiatry 2002; 52: 887–895.

    Article  CAS  PubMed  Google Scholar 

  45. Duncan EJ, Madonick SH, Parwani A, Angrist B, Rajan R, Chakravorty S et al. Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 2001; 25: 72–83.

    Article  CAS  PubMed  Google Scholar 

  46. Abel KM, Allin MP, Hemsley DR, Geyer MA . Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 2003; 44: 729–737.

    Article  CAS  PubMed  Google Scholar 

  47. Heekeren K, Neukirch A, Daumann J, Stoll M, Obradovic M, Kovar KA et al. Prepulse inhibition of the startle reflex and its attentional modulation in the human S-ketamine and N,N-dimethyltryptamine (DMT) models of psychosis. J Psychopharmacol 2007; 21: 312–320.

    Article  CAS  PubMed  Google Scholar 

  48. Braff DL, Stone C, Callaway E, Geyer M, Glick I, Bali L . Prestimulus effects of human startle reflex in normals and schizophrenics. Psychophysiology 1978; 15: 339–343.

    Article  CAS  PubMed  Google Scholar 

  49. Braff DL, Geyer MA, Swerdlow NR . Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 2001; 156: 234–258.

    Article  CAS  Google Scholar 

  50. Braff DL, Swerdlow NR, Geyer MA . Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry 1999; 156: 596–602.

    CAS  PubMed  Google Scholar 

  51. Linn GS, Javitt DC . Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 2001; 12: 117–120.

    Article  CAS  PubMed  Google Scholar 

  52. Javitt DC, Lindsley RW . Effects of phencyclidine on prepulse inhibition of acoustic startle response in the macaque. Psychopharmacology (Berl) 2001; 156: 165–168.

    Article  CAS  Google Scholar 

  53. Mansbach RS, Geyer MA . Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 1989; 2: 299–308.

    Article  CAS  PubMed  Google Scholar 

  54. Dulawa SC, Geyer MA . Psychopharmacology of prepulse inhibition in mice. Chin J Physiol 1996; 39: 139–146.

    CAS  PubMed  Google Scholar 

  55. Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA . Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology (Berl) 1998; 140: 75–80.

    Article  CAS  Google Scholar 

  56. de Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL . Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology (Berl) 1999; 142: 9–17.

    Article  CAS  Google Scholar 

  57. Insel TR, Gelhard R, Shapiro LE . The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice. Neuroscience 1991; 43: 623–630.

    Article  CAS  PubMed  Google Scholar 

  58. Insel TR, Young L, Witt DM, Crews D . Gonadal steroids have paradoxical effects on brain oxytocin receptors. J Neuroendocrinol 1993; 5: 619–628.

    Article  CAS  PubMed  Google Scholar 

  59. Gould BR, Zingg HH . Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-lacZ reporter mouse. Neuroscience 2003; 122: 155–167.

    Article  CAS  PubMed  Google Scholar 

  60. Reader TA, Senecal J . Distribution of glutamate receptors of the NMDA subtype in brains of heterozygous and homozygous weaver mutant mice. Neurochem Res 2001; 26: 579–589.

    Article  CAS  PubMed  Google Scholar 

  61. Maurice T, Vignon J . In vivo labeling of phencyclidine (PCP) receptors with 3H-TCP in the mouse brain. J Neurosci Res 1990; 26: 377–385.

    Article  CAS  PubMed  Google Scholar 

  62. Israel JM, Le Masson G, Theodosis DT, Poulain DA . Glutamatergic input governs periodicity and synchronization of bursting activity in oxytocin neurons in hypothalamic organotypic cultures. Eur J Neurosci 2003; 17: 2619–2629.

    Article  PubMed  Google Scholar 

  63. Van den Pol AN, Wuarin JP, Dudek FE . Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 1990; 250: 1276–1278.

    Article  CAS  PubMed  Google Scholar 

  64. Wuarin JP, Dudek FE . Excitatory amino acid antagonists inhibit synaptic responses in the guinea pig hypothalamic paraventricular nucleus. J Neurophysiol 1991; 65: 946–951.

    Article  CAS  PubMed  Google Scholar 

  65. Way SA, Dyball RE . Interaction between magnocellular neurons and cells of the perinuclear zone involves NMDA receptors. Ann NY Acad Sci 1993; 689: 683–684.

    Article  CAS  PubMed  Google Scholar 

  66. Wang YF, Hatton GI . Burst firing of oxytocin neurons in male rat hypothalamic slices. Brain Res 2005; 1032: 36–43.

    Article  CAS  PubMed  Google Scholar 

  67. Kombian SB, Hirasawa M, Mouginot D, Pittman QJ . Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. Prog Brain Res 2002; 139: 235–246.

    Article  CAS  PubMed  Google Scholar 

  68. Curras-Collazo MC, Gillard ER, Jin J, Pandika J . Vasopressin and oxytocin decrease excitatory amino acid release in adult rat supraoptic nucleus. J Neuroendocrinol 2003; 15: 182–190.

    Article  CAS  PubMed  Google Scholar 

  69. Osako Y, Otsuka T, Taniguchi M, Oka T, Kaba H . Oxytocin enhances presynaptic and postsynaptic glutamatergic transmission between rat olfactory bulb neurones in culture. Neurosci Lett 2001; 299: 65–68.

    Article  CAS  PubMed  Google Scholar 

  70. Barr AM, Powell SB, Markou A, Geyer MA . Iloperidone reduces sensorimotor gating deficits in pharmacological models, but not a developmental model, of disrupted prepulse inhibition in rats. Neuropharmacology 2006; 51: 457–465.

    Article  CAS  PubMed  Google Scholar 

  71. Yamada S, Yamauchi K, Hisatomi S, Annoh N, Tanaka M . Effects of sigma(1) receptor ligand, MS-377 on apomorphine- or phencyclidine-induced disruption of prepulse inhibition of acoustic startle in rats. Eur J Pharmacol 2000; 402: 251–254.

    Article  CAS  PubMed  Google Scholar 

  72. Su TP, Hayashi T . Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 2003; 10: 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  73. Jentsch JD, Roth RH . The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999; 20: 201–225.

    Article  CAS  PubMed  Google Scholar 

  74. Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI . Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 2005; 30: 1883–1894.

    Article  CAS  PubMed  Google Scholar 

  75. Corrigan PW, Reinke RR, Landsberger SA, Charate A, Toombs GA . The effects of atypical antipsychotic medications on psychosocial outcomes. Schizophr Res 2003; 63: 97–101.

    Article  PubMed  Google Scholar 

  76. Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT . Social amnesia in mice lacking the oxytocin gene. Nat Genet 2000; 25: 284–288.

    Article  CAS  PubMed  Google Scholar 

  77. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR . Infant vocalization, adult aggression, and fear behavior in an oxytocin null mutant mouse. Horm Behav 2000; 37: 145–155.

    Article  CAS  PubMed  Google Scholar 

  78. Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA 2005; 102: 16096–16101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DeVries AC, Young III WS, Nelson RJ . Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. J Neuroendocrinol 1997; 9: 363–368.

    Article  CAS  PubMed  Google Scholar 

  80. Mantella RC, Vollmer RR, Li X, Amico JA . Female oxytocin-deficient mice display enhanced anxiety-related behavior. Endocrinology 2003; 144: 2291–2296.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NIH Animal Facility in Building 49 for their exceptional care. We also thank Selen Tolu, James Heath and Emily Shepard for technical assistance as well as Dr Eric Mintz for his statistical expertise. This work was supported by the NIMH Intramural Research Program (Z01-MH-002498-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W S Young III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, H., Stephens, S. & Young, W. Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice. Mol Psychiatry 14, 190–196 (2009). https://doi.org/10.1038/sj.mp.4002150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002150

Keywords

This article is cited by

Search

Quick links