Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins

Abstract

Modern methods that use systematic, quantitative and unbiased approaches are making it possible to discover proteins altered by a disease. To identify proteins that might be differentially expressed in autism, serum proteins from blood were subjected to trypsin digestion followed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) on time-of-flight (TOF) instruments to identify differentially expressed peptides. Children with autism 4–6 years of age (n=69) were compared to typically developing children (n=35) with similar age and gender distributions. A total of 6348 peptide components were quantified. Of these, five peptide components corresponding to four known proteins had an effect size >0.99 with a P<0.05 and a Mascot identification score of 30 or greater for autism compared to controls. The four proteins were: Apolipoprotein (apo) B-100, Complement Factor H Related Protein (FHR1), Complement C1q and Fibronectin 1 (FN1). In addition, apo B-100 and apo A-IV were higher in children with high compared to low functioning autism. Apos are involved in the transport of lipids, cholesterol and vitamin E. The complement system is involved in the lysis and removal of infectious organisms in blood, and may be involved in cellular apoptosis in brain. Despite limitations of the study, including the low fold changes and variable detection rates for the peptide components, the data support possible differences of circulating proteins in autism, and should help stimulate the continued search for causes and treatments of autism by examining peripheral blood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lord C, Cook EH, Leventhal BL, Amaral DG . Autism spectrum disorders. Neuron 2000; 28: 355–363.

    Article  CAS  PubMed  Google Scholar 

  2. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  PubMed  Google Scholar 

  3. Filipek PA, Accardo PJ, Ashwal S, Baranek GT, Cook Jr EH, Dawson G et al. Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 2000; 55: 468–479.

    Article  CAS  PubMed  Google Scholar 

  4. McConnell SR . Interventions to facilitate social interaction for young children with autism: review of available research and recommendations for educational intervention and future research. J Autism Dev Disord 2002; 32: 351–372.

    Article  PubMed  Google Scholar 

  5. Butter EM, Wynn J, Mulick JA . Early intervention critical to autism treatment. Pediatr Ann 2003; 32: 677–684.

    Article  PubMed  Google Scholar 

  6. Ozonoff S, Goodlin-Jones BL, Solomon M . Evidence-based assessment of autism spectrum disorders in children and adolescents. J Clin Child Adolesc Psychol 2005; 34: 541–547.

    Article  Google Scholar 

  7. Francis K . Autism interventions: a critical update. Dev Med Child Neurol 2005; 47: 493–499.

    Article  CAS  PubMed  Google Scholar 

  8. Bailey A, Phillips W, Rutter M . Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry 1996; 37: 89–126.

    Article  CAS  PubMed  Google Scholar 

  9. Folstein SE, Rosen-Sheidley B . Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001; 2: 943–955.

    Article  CAS  PubMed  Google Scholar 

  10. Skaar DA, Shao Y, Haines JL, Stenger JE, Jaworski J, Martin ER et al. Analysis of the RELN gene as a genetic risk factor for autism. Mol Psychiatry 2005; 10: 563–571.

    Article  CAS  PubMed  Google Scholar 

  11. Cantor RM, Kono N, Duvall JA, Alvarez-Retuerto A, Stone JL, Alarcon M et al. Replication of autism linkage: fine-mapping peak at 17q21. Am J Hum Genet 2005; 76: 1050–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 2001; 69: 463–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCauley JL, Li C, Jiang L, Olson LM, Crockett G, Gainer K et al. Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet 2005; 6: 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Odell D, Maciulis A, Cutler A, Warren L, McMahon WM, Coon H et al. Confirmation of the association of the C4B null allelle in autism. Hum Immunol 2005; 66: 140–145.

    Article  CAS  PubMed  Google Scholar 

  15. Segurado R, Conroy J, Meally E, Fitzgerald M, Gill M, Gallagher L . Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 2005; 162: 2182–2184.

    Article  PubMed  Google Scholar 

  16. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L . Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 2006; 11: 18–28.

    Article  CAS  Google Scholar 

  17. Wassink TH, Brzustowicz LM, Bartlett CW, Szatmari P . The search for autism disease genes. Ment Retard Dev Disabil Res Rev 2004; 10: 272–283.

    Article  PubMed  Google Scholar 

  18. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J et al. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 1999; 65: 493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Risch NJ . Searching for genetic determinants in the new millennium. Nature 2000; 405: 847–856.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrante P, Saresella M, Guerini FR, Marzorati M, Musetti MC, Cazzullo AG . Significant association of HLA A2-DR11 with CD4 naive decrease in autistic children. Biomed Pharmacother 2003; 57: 372–374.

    Article  CAS  PubMed  Google Scholar 

  21. Purcell AE, Jeon OH, Pevsner J . The abnormal regulation of gene expression in autistic brain tissue. J Autism Dev Disord 2001; 31: 545–549.

    Article  CAS  PubMed  Google Scholar 

  22. Torres AR, Maciulis A, Odell D . The association of MHC genes with autism. Front Biosci 2001; 6: D936–D943.

    Article  CAS  PubMed  Google Scholar 

  23. Torres AR, Maciulis A, Stubbs EG, Cutler A, Odell D . The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol 2002; 63: 311–316.

    Article  CAS  PubMed  Google Scholar 

  24. van Gent T, Heijnen CJ, Treffers PD . Autism and the immune system. J Child Psychol Psychiatry 1997; 38: 337–349.

    Article  CAS  PubMed  Google Scholar 

  25. Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW et al. Strong association of the third hypervariable region of HLA-DR beta 1 with autism. J Neuroimmunol 1996; 67: 97–102.

    Article  CAS  PubMed  Google Scholar 

  26. Warren RP, Yonk J, Burger RW, Odell D, Warren WL . DR-positive T cells in autism: association with decreased plasma levels of the complement C4B protein. Neuropsychobiology 1995; 31: 53–57.

    Article  CAS  PubMed  Google Scholar 

  27. Warren RP, Singh VK, Averett RE, Odell JD, Maciulis A, Burger RA et al. Immunogenetic studies in autism and related disorders. Mol Chem Neuropathol 1996; 28: 77–81.

    Article  CAS  PubMed  Google Scholar 

  28. Ashwood P, Van de Water J . A review of autism and the immune response. Clin Dev Immunol 2004; 11: 165–174.

    Article  PubMed  PubMed Central  Google Scholar 

  29. DeFelice ML, Ruchelli ED, Markowitz JE, Strogatz M, Reddy KP, Kadivar K et al. Intestinal cytokines in children with pervasive developmental disorders. Am J Gastroenterol 2003; 98: 1777–1782.

    Article  CAS  PubMed  Google Scholar 

  30. Jyonouchi H, Sun S, Le H . Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 2001; 120: 170–179.

    Article  CAS  PubMed  Google Scholar 

  31. Jyonouchi H, Geng L, Ruby A, Reddy C, Zimmerman-Bier B . Evaluation of an association between gastrointestinal symptoms and cytokine production against common dietary proteins in children with autism spectrum disorders. J Pediatr 2005; 146: 605–610.

    Article  CAS  PubMed  Google Scholar 

  32. Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006; 14: 198–205.

    Article  CAS  Google Scholar 

  33. Singh VK . Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol 1996; 66: 143–145.

    Article  CAS  PubMed  Google Scholar 

  34. Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A et al. Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 2005; 33: 195–201.

    Article  PubMed  Google Scholar 

  35. Ashwood P, Van de Water J . Is autism an autoimmune disease? Autoimmun Rev 2004; 3: 557–562.

    Article  CAS  PubMed  Google Scholar 

  36. Silva SC, Correia C, Fesel C, Barreto M, Coutinho AM, Marques C et al. Autoantibody repertoires to brain tissue in autism nuclear families. J Neuroimmunol 2004; 152: 176–182.

    Article  CAS  PubMed  Google Scholar 

  37. Singh VK, Rivas WH . Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci Lett 2004; 355: 53–56.

    Article  CAS  PubMed  Google Scholar 

  38. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA . Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57: 67–81.

    Article  CAS  PubMed  Google Scholar 

  39. Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN . Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999; 14: 388–394.

    Article  CAS  PubMed  Google Scholar 

  40. Croen LA, Grether JK, Yoshida CK, Odouli R, Van de Water J . Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: a case-control study. Arch Pediatr Adolesc Med 2005; 159: 151–157.

    Article  PubMed  Google Scholar 

  41. Kantor AB . Comprehensive phenotyping and biological marker discovery. Dis Markers 2002; 18: 91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen Y, Kim J, Strittmatter EF, Jacobs JM, Camp II DG, Fang R et al. Characterization of the human blood plasma proteome. Proteomics 2005; 5: 4034–4045.

    Article  CAS  PubMed  Google Scholar 

  43. Junaid MA, Pullarkat RK . Proteomic approach for the elucidation of biological defects in autism. J Autism Dev Disord 2001; 31: 557–560.

    Article  CAS  PubMed  Google Scholar 

  44. Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock W, Pappin DJ et al. Proteomics: new perspectives, new biomedical opportunities. Lancet 2000; 356: 1749–1756.

    Article  CAS  PubMed  Google Scholar 

  45. Chan SM, Utz PJ . The challenge of analyzing the proteome in humans with autoimmune diseases. Ann NY Acad Sci 2005; 1062: 61–68.

    Article  PubMed  Google Scholar 

  46. Kantor AB, Alters SE, Cheal K, Dietz LJ . Immune systems biology: immunoprofiling of cells and molecules. Biotechniques 2004; 36: 520–524.

    Article  CAS  PubMed  Google Scholar 

  47. Xiao Z, Prieto D, Conrads TP, Veenstra TD, Issaq HJ . Proteomic patterns: their potential for disease diagnosis. Mol Cell Endocrinol 2005; 230: 95–106.

    Article  CAS  PubMed  Google Scholar 

  48. Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower Brooks S, Pullarkat RK . Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 2004; 131: 11–17.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lord C, Rutter M, DiLavore PC, Risi S . Autism Diagnostic Observation Schedule (ADOS). Western Psychological Services: Los Angeles, CA, 2002.

    Google Scholar 

  50. Lord C, Rutter M, Le Couteur A . Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  51. Berument SK, Rutter M, Lord C, Pickles A, Bailey A . Autism screening questionnaire: diagnostic validity. Br J Psychiatry 1999; 175: 444–451.

    Article  CAS  PubMed  Google Scholar 

  52. Thorndike RL, Hagen EP, Sattler JM . The Stanford Binet Intelligence Scale, 4th edn. Riverside Publishing: Chicago, 1986.

    Google Scholar 

  53. O'Connor KC, Roy S, Becker C, Hafler DA, Kantor AB . Comprehensive phenotyping in multiple sclerosis: discovery based proteomics and the current understanding of putative biomarkers. Disease Mark 2006; 22: 213–225.

    Article  CAS  Google Scholar 

  54. Roy SM, Becker CH . Quantification of proteins and metabolites by mass spectrometry without isotopic labeling. In: Sechi S (ed). Methods in Molecular Biology, Vol 359. Quantitative Proteomics by Mass Spectrometry. Humana Press: Totowa, NJ, 2007, pp 87–105.

    Chapter  Google Scholar 

  55. Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 2003; 75: 4818–4826.

    Article  CAS  PubMed  Google Scholar 

  56. Becker C, Hastings CA, Norton S, inventors. Mass spectrometric quantification of chmical mixture components. USA patent 6,835,927, 2002.

  57. Hastings CA, Norton SM, Roy S . New algorithms for processing and peak detection in liquid chromatography/mass spectrometry data. Rapid Commun Mass Spectrom 2002; 16: 462–467.

    Article  CAS  PubMed  Google Scholar 

  58. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS . Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20: 3551–3567.

    Article  CAS  PubMed  Google Scholar 

  59. Blair RC, Troendle JF, Beck RW . Control of familywise errors in multiple endpoint assessments via stepwise permutation tests. Statis Med 1996; 15: 1107–1121.

    Article  CAS  Google Scholar 

  60. Holm S . A simple sequentially rejective multiple test procedure. Scand J Statist 1979; 6: 65–70.

    Google Scholar 

  61. Olofsson SO, Boren J . Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 2005; 258: 395–410.

    Article  CAS  PubMed  Google Scholar 

  62. Marsh JB . Lipoprotein metabolism in obesity and diabetes: insights from stable isotope kinetic studies in humans. Nutr Rev 2003; 61: 363–375.

    Article  PubMed  Google Scholar 

  63. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J . Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001; 57: 1618–1628.

    Article  CAS  PubMed  Google Scholar 

  64. Ashwood P, Anthony A, Torrente F, Wakefield AJ . Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10. J Clin Immunol 2004; 24: 664–673.

    Article  CAS  PubMed  Google Scholar 

  65. Erickson CA, Stigler KA, Corkins MR, Posey DJ, Fitzgerald JF, McDougle CJ . Gastrointestinal factors in autistic disorder: a critical review. J Autism Dev Disord 2005; 35: 713–727.

    Article  PubMed  Google Scholar 

  66. Jyonouchi H, Sun S, Itokazu N . Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 2002; 46: 76–84.

    Article  CAS  PubMed  Google Scholar 

  67. Alfano J, Pedersen RC, Kramer RE, Brownie AC . Cholesterol metabolism in the rat adrenal cortex: acute temporal changes following stress. Can J Biochem Cell Biol 1983; 61: 708–713.

    Article  CAS  PubMed  Google Scholar 

  68. Corbett BA, Mendoza S, Abdullah M, Wegelin JA, Levine S . Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology 2006; 31: 59–68.

    Article  CAS  PubMed  Google Scholar 

  69. Xu N, Ekstrom U, Nilsson-Ehle P . ACTH decreases the expression and secretion of apolipoprotein B in HepG2 cell cultures. J Biol Chem 2001; 276: 38680–38684.

    Article  CAS  PubMed  Google Scholar 

  70. Stan S, Delvin E, Lambert M, Seidman E, Levy E . Apo A-IV: an update on regulation and physiologic functions. Biochim Biophys Acta 2003; 1631: 177–187.

    Article  CAS  PubMed  Google Scholar 

  71. Qin X, Tso P . The role of apolipoprotein AIV on the control of food intake. Curr Drug Targets 2005; 6: 145–151.

    Article  CAS  PubMed  Google Scholar 

  72. Parkin J, Cohen B . An overview of the immune system. Lancet 2001; 357: 1777–1789.

    Article  CAS  PubMed  Google Scholar 

  73. Barrington R, Zhang M, Fischer M, Carroll MC . The role of complement in inflammation and adaptive immunity. Immunol Rev 2001; 180: 5–15.

    Article  CAS  PubMed  Google Scholar 

  74. Tosi MF . Innate immune responses to infection. J Allergy Clin Immunol 2005; 116: 241–249.

    Article  CAS  PubMed  Google Scholar 

  75. Korb LC, Ahearn JM . C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158: 4525–4528.

    CAS  PubMed  Google Scholar 

  76. Webster SD, Park M, Fonseca MI, Tenner AJ . Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis. J Leukoc Biol 2000; 67: 109–116.

    Article  CAS  PubMed  Google Scholar 

  77. Torrente F, Ashwood P, Day R, Machado N, Furlano RI, Anthony A et al. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry 2002; 7: 375–382, 334.

    Article  CAS  PubMed  Google Scholar 

  78. van den Berg RH, Faber-Krol MC, Sim RB, Daha MR . The first subcomponent of complement, C1q, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J Immunol 1998; 161: 6924–6930.

    CAS  PubMed  Google Scholar 

  79. Ogden CA, Elkon KB . Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr Dir Autoimmun 2006; 9: 120–142.

    CAS  PubMed  Google Scholar 

  80. Botto M, Walport MJ . C1q, autoimmunity and apoptosis. Immunobiology 2002; 205: 395–406.

    Article  CAS  PubMed  Google Scholar 

  81. Francis K, Van Beek J, Canova C, Neal JW, Gasque P . Innate immunity and brain inflammation: the key role of complement. Expert Rev Mol Med 2003; 2003: 1–19.

    Google Scholar 

  82. Bing DH, Almeda S, Isliker H, Lahav J, Hynes RO . Fibronectin binds to the C1q component of complement. Proc Natl Acad Sci USA 1982; 79: 4198–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P . The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 2004; 41: 355–367.

    Article  CAS  PubMed  Google Scholar 

  84. Zipfel PF . Complement factor H: physiology and pathophysiology. Semin Thromb Hemost 2001; 27: 191–199.

    Article  CAS  PubMed  Google Scholar 

  85. van Beek J, Elward K, Gasque P . Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann NY Acad Sci 2003; 992: 56–71.

    Article  CAS  PubMed  Google Scholar 

  86. Tuppo EE, Arias HR . The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 2005; 37: 289–305.

    Article  CAS  PubMed  Google Scholar 

  87. van Beek J, van Meurs M, t Hart BA, Brok HP, Neal JW, Chatagner A et al. Decay-accelerating factor (CD55) is expressed by neurons in response to chronic but not acute autoimmune central nervous system inflammation associated with complement activation. J Immunol 2005; 174: 2353–2365.

    Article  CAS  PubMed  Google Scholar 

  88. Ten VS, Sosunov SA, Mazer SP, Stark RI, Caspersen C, Sughrue ME et al. C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice. Stroke 2005; 36: 2244–2250, (E-pub 22 September 2005).

    Article  CAS  PubMed  Google Scholar 

  89. Fonseca MI, Zhou J, Botto M, Tenner AJ . Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J Neurosci 2004; 24: 6457–6465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Serrano J, Encinas JM, Fernandez AP, Castro-Blanco S, Alonso D, Fernandez-Vizarra P et al. Distribution of immunoreactivity for the adrenomedullin binding protein, complement factor H, in the rat brain. Neuroscience 2003; 116: 947–962.

    Article  CAS  PubMed  Google Scholar 

  91. Sakai T, Johnson KJ, Murozono M, Sakai K, Magnuson MA, Wieloch T et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat Med 2001; 7: 324–330.

    Article  CAS  PubMed  Google Scholar 

  92. Fatemi SH . Reelin glycoprotein: structure, biology and roles in health and disease. Mol Psychiatry 2005; 10: 251–257.

    Article  CAS  PubMed  Google Scholar 

  93. D'Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T . Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 1997; 17: 23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Quattrocchi CC, Wannenes F, Persico AM, Ciafre SA, D'Arcangelo G, Farace MG et al. Reelin is a serine protease of the extracellular matrix. J Biol Chem 2002; 277: 303–309.

    Article  CAS  PubMed  Google Scholar 

  95. Baggerly KA, Morris JS, Coombes KR . Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004; 20: 777–785.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David G Amaral for the initial inspiration of this investigation. We are grateful to the many individuals at the MIND Institute especially Meridith Brandt, Anny Wu, Susan Bacalman, Veronica Lopez-Villasenor, Nuny Khamphay and many others that helped make the study possible. We are grateful to the individuals at PPD who contributed to sample processing and analysis, especially Hua Lin and Markus Anderle. Most importantly, we are indebted to the children and families who participated in this study. This study was supported by a grant from the MIND Institute, NIH grants to Frank R Sharp (NS043252; NS028167; and NS044283), David Rocke (P42-ES04699 and R01-HG003352) and by an NIH career development award to Blythe A Corbett (5K08NMHO72958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Corbett.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbett, B., Kantor, A., Schulman, H. et al. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 12, 292–306 (2007). https://doi.org/10.1038/sj.mp.4001943

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001943

Keywords

This article is cited by

Search

Quick links