Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Monoamine depletion in psychiatric and healthy populations: review

Abstract

A number of techniques temporarily lower the functioning of monoamines: acute tryptophan depletion (ATD), alpha-methyl-para-tyrosine (AMPT) and acute phenylalanine/tyrosine depletion (APTD). This paper reviews the results of monoamine depletion studies in humans for the period 1966 until December 2002. The evidence suggests that all three interventions are specific, in terms of their short-term effects on one or two neurotransmitter systems, rather than on brain protein metabolism in general. The AMPT procedure is somewhat less specific, affecting both the dopamine and norepinephrine systems. The behavioral effects of ATD and AMPT are remarkably similar. Neither procedure has an immediate effect on the symptoms of depressed patients; however, both induce transient depressive symptoms in some remitted depressed patients. The magnitude of the effects, response rate and quality of response are also comparable. APTD has not been studied in recovered major depressive patients. Despite the similarities, the effects are distinctive in that ATD affects a subgroup of recently remitted patients treated with serotonergic medications, whereas AMPT affects recently remitted patients treated with noradrenergic medications. The evidence also suggests that ATD and APTD affect different cognitive functions, in particular different memory systems. Few studies investigated cognitive effects of the procedures in patients. Patients who are in remission for longer may also be vulnerable to ATD and AMPT, but the relationship with prior treatment is much weaker. For these patients, individual vulnerability markers are the more important determinants of depressive response, making these techniques potentially useful models of vulnerability to depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blier P, De Montigny C . Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive–compulsive disorder responses. Biol Psychiatry 1998; 44: 313–323.

    Article  CAS  PubMed  Google Scholar 

  2. Nutt DJ, Forshall S, Bell C, Rich A, Sandford J, Nash J et al. Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders. Eur Neuropsychopharmacol 1999; 9: S81–S86.

    Article  CAS  PubMed  Google Scholar 

  3. Young SN, Smith S, Pihl RO, Ervin FR . Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 1985; 87: 173–177.

    Article  CAS  PubMed  Google Scholar 

  4. Reilly JG, McTavish SFB, Young AH . Rapid depletion of plasma tryptophan. J Psychopharmacol 1997; 11: 381–392.

    Article  CAS  PubMed  Google Scholar 

  5. Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heninger GR et al. Serotonin and the neurobiology of depression. Arch Gen Psychiatry 1994; 51: 865–874.

    Article  CAS  PubMed  Google Scholar 

  6. Benkelfat C, Ellenbogen MA, Dean P, Palmour RM, Young SN . Mood-lowering effect of tryptophan depletion. Enhanced susceptibility in young men at genetic risk for major affective disorders. Arch Gen Psychiatry 1994; 51: 687–697.

    Article  CAS  PubMed  Google Scholar 

  7. Van Praag HM, Asnis GM, Kahn RS, Brown SL, Korn M, Friedman JM et al. Nosological tunnel vision in biological psychiatry. A plea for a functional psychopathology. Ann NY Acad Sci 1990; 600: 501–510.

    Article  CAS  PubMed  Google Scholar 

  8. Stahl SM . Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 1998; 51: 215–235.

    Article  CAS  PubMed  Google Scholar 

  9. Van Praag HM . Faulty cortisol/serotonin interplay: psychopathological and biological characterisation of a new, hypothetical depression subtype (seca depression). Psychiatry Res 1996; 65: 143–157.

    Article  CAS  PubMed  Google Scholar 

  10. Riedel WJ, Schoenmakers E, Vermeeren A, O’Hanlon JF . The influence of trazodone treatment on cognitive functions in outpatients with major depressive disorder. Hum Psychopharmacol 1999; 14: 499–508.

    Article  CAS  Google Scholar 

  11. Robbins TW, Everitt BJ . Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem 2002; 78: 625–636.

    Article  CAS  PubMed  Google Scholar 

  12. Luciana M, Collins PF, Depue RA . Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 2002; 8: 218–226.

    Article  Google Scholar 

  13. Cahill L, Prins B, Weber M, McGaugh JL . Beta-adrenergic activation and memory for emotional events. Nature 1994; 371: 702–704.

    Article  CAS  PubMed  Google Scholar 

  14. Gijsman HJ, Scarna A, Harmer CJ, McTavish SB, Odontiadis J, Cowen PJ et al. A dose-finding study on the effects of branch chain amino acids on surrogate markers of brain dopamine function. Psychopharmacology (Berl) 2002; 160: 192–197.

    Article  CAS  Google Scholar 

  15. Van der Does AJW . The effects of tryptophan depletion on mood and psychiatric symptoms. J Affect Disord 2001; 64: 107–119.

    Article  CAS  PubMed  Google Scholar 

  16. Carpenter LL, Anderson GM, Pelton GH, Guding JA, Kirwin PD, Price LH et al. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 1997; 19: 26–35.

    Article  Google Scholar 

  17. Krahn LE, Lu PY, Klee G, Delgado PL, Lin SC, Zimmerman RC . Examining serotonin function: a modified technique for rapid tryptophan depletion. Neuropsychopharmacology 1996; 15: 325–328.

    Article  CAS  PubMed  Google Scholar 

  18. Weltzin TE, Fernstrom JD, McConaha C, Kaye WH . Acute tryptophan depletion in bulimia: effects on large neutral amino acids. Biol Psychiatry 1994; 35: 388–397.

    Article  CAS  PubMed  Google Scholar 

  19. Wolfe BE, Metzger ED, Jimerson DC . Comparison of the effects of amino acid mixture and placebo on plasma tryptophan to large neutral amino acid ratio. Life Sci 1995; 56: 1395–1400.

    Article  CAS  PubMed  Google Scholar 

  20. Booij L, Van der Does AJW, Benkelfat C, Bremner JD, Cowen PJ, Fava M et al. Predictors of mood response to acute tryptophan depletion: a reanalysis. Neuropsychopharmacology 2002; 27: 852–861.

    Article  CAS  PubMed  Google Scholar 

  21. Blokland A, Lieben CKJ, Van Oorsouw KIM, Deutz NEP . A new method for lowering plasma tryptophan concentrations: no effect on affective behavior but impaired object memory in rats. Soc Neurosci Abstr 2001; 319.1.

  22. Lieben CKJ, Westerink B, Blokland A, Deutz NEP . Acute tryptophan and serotonin depletion using an optimized tryptophan-free protein-carbohydrate mixture in the adult rat. Neurochem Int 2004; 44: 9–16.

    Article  CAS  PubMed  Google Scholar 

  23. Blokland A, Lieben C, Deutz NEP . Anxiogenic and depressive-like effects, but no cognitive deficits after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 2002; 16: 39–49.

    Article  CAS  PubMed  Google Scholar 

  24. Brown CM, Fletcher PJ, Coscina DV . Acute amino acid loads that deplete brain serotonin fail to alter behavior. Pharmacol Biochem Behav 1998; 59: 115–121.

    Article  CAS  PubMed  Google Scholar 

  25. Moreno FA, Gelenberg AJ, Heninger GR, Potter RL, McKnight KM, Allen J et al. Tryptophan depletion and depressive vulnerability. Biol Psychiatry 1999; 46: 498–505.

    Article  CAS  PubMed  Google Scholar 

  26. Moreno FA, Heninger GR, McGahuey CA, Delgado PL . Tryptophan depletion and risk of depressive relapse. Biol Psychiatry 2000; 48: 327–329.

    Article  CAS  PubMed  Google Scholar 

  27. Leyton M, Ghadirian AM, Young SN, Palmour RM, Blier P, Helmers KF et al. Depressive relapse following acute tryptophan depletion in patients with major depressive disorder. J Psychopharmacol 2000; 14: 84–287.

    Article  Google Scholar 

  28. Spillmann MK, Van der Does AJW, Rankin M, Vuolo R, Alpert JF, Nierenberg AA et al. Tryptophan depletion in SSRI-recovered depressed outpatients. Psychopharmacology 2001; 155: 123–127.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson L, El-Khoury A, Aberg-Wistedt A, Stain-Malmgren R, Mathe AA . Tryptophan depletion in lithium-stabilized patients with affective disorder. Int J Neuropsychopharmacol 2001; 4: 329–336.

    Article  CAS  PubMed  Google Scholar 

  30. Hughes JH, Dunne F, Young AH . Effects of acute tryptophan depletion on mood and suicidal ideation in bipolar patients symptomatically stable on lithium. Br J Psychiatry 2000; 177: 447–451.

    Article  CAS  PubMed  Google Scholar 

  31. Benkelfat C, Seletti B, Palmour RM, Hillel J, Ellenbogen M, Young SN . Tryptophan depletion in stable lithium-treated patients with bipolar disorder in remission. Arch Gen Psychiatry 1995; 52: 154–155.

    Article  CAS  PubMed  Google Scholar 

  32. Cassidy F, Murray E, Carroll BJ . Tryptophan depletion in recently manic patients treated with lithium. Biol Psychiatry 1998; 43: 230–232.

    Article  CAS  PubMed  Google Scholar 

  33. Leyton M, Young SN, Benkelfat C . Relapse of depression after rapid depletion of tryptophan. Lancet 1997; 349: 1840–1841.

    Article  CAS  PubMed  Google Scholar 

  34. Van der Does AJW . The mood-lowering effect of tryptophan depletion: possible explanation for discrepant findings. Arch Gen Psychiatry 2001; 58: 200–201.

    Article  CAS  PubMed  Google Scholar 

  35. Delgado PL, Charney DS, Price LH, Aghajanian G, Landis H, Heninger GR . Serotonin function and the mechanism of antidepressant action. Arch Gen Psychiatry 1990; 47: 411–418.

    Article  CAS  PubMed  Google Scholar 

  36. Delgado PL, Price LH, Miller HL, Salomon RM, Licinio J, Krystal JH et al. Rapid serotonin depletion as a provocative challenge test for patients with major depression. Psychopharmacol Bull 1991; 27: 321–330.

    CAS  PubMed  Google Scholar 

  37. Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH, Moreno FA et al. Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine. Biol Psychiatry 1999; 46: 212–220.

    Article  CAS  PubMed  Google Scholar 

  38. Yatham LN, Liddle PF, Shiah IS, Lam RW, Adam MJ et al. Effects of rapid tryptophan depletion on brain 5-HT2 receptors: a PET study. Br J Psychiatry 2001; 178: 448–453.

    Article  CAS  PubMed  Google Scholar 

  39. Price LH, Malison RT, McDougle CJ, Pelton GH, Heninger GR . The neurobiology of tryptophan depletion in depression: effects of intravenous tryptophan infusion. Biol-Psychiatry 1998; 43: 339–347.

    Article  CAS  PubMed  Google Scholar 

  40. Van Praag HM . Serotonin related, anxiety/aggression driven, stressor precipitated depression: a psycho biological hypothesis. Eur Psychiatry 1996; 11: 57–67.

    Article  CAS  PubMed  Google Scholar 

  41. Riedel WJ, Sobczak S, Nicolson N, Honig A . Stress,cortisol and memory as markers of serotonergic vulnerability. Acta Neuropsychiatr 2002; 14: 186–191.

    Article  PubMed  Google Scholar 

  42. Moreno FA, Rowe DC, Kaiser B, Chase D, Michaels T, Gelernter J et al. Association between a serotonin transporter promoter region polymorphism and mood response during tryptophan depletion. Mol Psychiatry 2002; 7: 213–216.

    Article  CAS  PubMed  Google Scholar 

  43. Neumeister A, Konstantinidis A, Stastny J, Schwarz MJ, Vitouch O, Willeit M et al. Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Arch Gen Psychiatry 2002; 59: 613–620.

    Article  CAS  PubMed  Google Scholar 

  44. Van der Does AJW . The mood-lowering effect of tryptophan depletion: possible explanation for discrepant findings [Letter]. Arch Gen Psychiatry 2001; 58: 200–201.

    Article  CAS  PubMed  Google Scholar 

  45. Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, Newman ME . 5-HT1A receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge. Neuropsychopharmacology 1999; 20: 628–639.

    Article  CAS  PubMed  Google Scholar 

  46. Quested DJ, Sargent PA, Cowen PJ . SSRI treatment decreases prolactin and hyperthermic responses to mCPP. Psychopharmacology 1997; 133: 305–308.

    Article  CAS  PubMed  Google Scholar 

  47. Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C . Acute tryptophan depletion in healthy young women with a family history of major affective disorder. Psychol Med 1999; 29: 35–46.

    Article  CAS  PubMed  Google Scholar 

  48. Quintin P, Benkelfat C, Launay JM, Arnulf I, Pointereau-Bellenger A, Barbault S et al. Clinical and neurochemical effect of acute tryptophan depletion in unaffected relatives of patients with bipolar affective disorder. Biol Psychiatry 2001; 50: 184–190.

    Article  CAS  PubMed  Google Scholar 

  49. Klaassen T, Riedel WJ, Deutz NEP, Van Praag HM . Mood congruent memory bias induced by tryptophan depletion. Psychol Med 2002; 32: 167–172.

    Article  CAS  PubMed  Google Scholar 

  50. Sobczak S, Honig A, Nicolson NA, Riedel WJ . Effects of acute tryptophan depletion on mood and cortisol release in first-degree relatives of type I and type II bipolar patients and healthy matched controls. Neuropsychopharmacology 2002; 27: 834–842.

    Article  CAS  PubMed  Google Scholar 

  51. Stewart ME, Deary IJ, Ebmeier KP . Neuroticism as a predictor of mood change: the effects of tryptophan depletion. Br J Psychiatry 2002; 181: 242–247.

    Article  PubMed  Google Scholar 

  52. Neumeister A, Praschak-Rieder N, Hesselmann B, Vitouch O, Rauh M, Barochka A et al. Effects of tryptophan depletion in fully remitted patients with seasonal affective disorder during summer. Psychol Med 1998; 28: 257–264.

    Article  CAS  PubMed  Google Scholar 

  53. Lam RW, Bowering TA, Tam EM, Grewal A, Yatham LN, Shiah IS et al. Effects of rapid tryptophan depletion in patients with seasonal affective disorder in natural summer remission. Psychol Med 2000; 30: 79–87.

    Article  CAS  PubMed  Google Scholar 

  54. Bell C, Abrams J, Nutt D . Tryptophan depletion: implications for psychiatry. Br J Psychiatry 2001; 178: 399–405.

    Article  CAS  PubMed  Google Scholar 

  55. Neumeister A, Konstantinidis A, Praschak-Rieder N, Willeit M, Hilger E, Stastny J et al. Monoaminergic function in the pathogenesis of seasonal affective disorder. Int J Neuropsychopharmacol 2001; 4: 409–420.

    Article  CAS  PubMed  Google Scholar 

  56. Van der Does AJW . Acute tryptophan depletion (ATD) induces depressive symptoms [Letter]. Psychol Med 2003; 33: 1133–1134.

    Article  CAS  PubMed  Google Scholar 

  57. Kaye WH, Gendall KA, Fernstrom MH, Fernstrom JD, McConaha CW, Weltzin TE . Effects of acute tryptophan depletion on mood in bulimia nervosa. Biol Psychiatry 2000; 47: 151–157.

    Article  CAS  PubMed  Google Scholar 

  58. Bell C, Forshall S, Adrover M, Nash J, Hood S, Argyropoulos S et al. Does 5-HT restrain panic? J Psychopharmacol 2002; 16: 5–14.

    Article  CAS  PubMed  Google Scholar 

  59. Miller HEJ, Deakin JFW, Anderson IM . Effect of acute tryptophan depletion on CO2-induced anxiety in patients with panic disorder and normal volunteers. Br J Psychiatry 2000; 176: 182–188.

    Article  CAS  PubMed  Google Scholar 

  60. Schruers K, Klaassen T, Pols H, Overbeek T, Deutz NEP, Griez E . Effects of tryptophan depletion on carbon dioxide provoked panic in panic disorder patients. Psychiatry Res 2000; 93: 179–187.

    Article  CAS  PubMed  Google Scholar 

  61. Petrakis IL, Buonopane A, O’Malley S, Cermik O, Trevisan L, Boutros NN et al. The effect of tryptophan depletion on alcohol self-administration in non-treatment-seeking alcoholic individuals. Alcohol Clin Exp Res 2002; 26: 969–975.

    Article  CAS  PubMed  Google Scholar 

  62. Petrakis IL, Trevisan L, Boutros NN, Limoncelli D, Cooney NL, Krystal JH . Effect of tryptophan depletion on alcohol cue-induced craving in abstinent alcoholic patients. Alcohol Clin Exp Res 2001; 25: 1151–1155.

    Article  CAS  PubMed  Google Scholar 

  63. Crean J, Richards JB, De Wit H . Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 2002; 136: 349–357.

    Article  CAS  PubMed  Google Scholar 

  64. Golightly KL, Lloyd JA, Hobson JE, Gallagher P, Mercer G, Young AH . Acute tryptophan depletion in schizophrenia. Psychol Med 2001; 31: 75–84.

    Article  CAS  PubMed  Google Scholar 

  65. Bjork JM, Dougherty DM, Moeller FG, Swann AC . Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 2000; 22: 357–369.

    Article  CAS  PubMed  Google Scholar 

  66. Bond AJ, Wingrove J, Critchlow DG . Tryptophan depletion increases aggression in women during the premenstrual phase. Psychopharmacology 2001; 156: 477–480.

    Article  CAS  PubMed  Google Scholar 

  67. Schmeck K, Sadigorsky S, Englert E, Demisch L, Dierks T, Barta S et al. Mood changes following acute tryptophan depletion in healthy adults. Psychopathology 2002; 35: 234–240.

    Article  PubMed  Google Scholar 

  68. Marsh DM, Dougherty DM, Moeller FG, Swann AC, Spiga R . Laboratory-measured aggressive behavior of women: acute tryptophan depletion and augmentation. Neuropsychopharmacology 2002; 26: 660–671.

    Article  CAS  PubMed  Google Scholar 

  69. Cleare AJ, Bond AJ . The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology 1995; 118: 72–81.

    Article  CAS  PubMed  Google Scholar 

  70. Schmitt JAJ, Jorissen BL, Sobczak S, Van Boxtel MPJ, Hogervorst E, Deutz NEP et al. Tryptophan depletion impairs memory consolidation, but improves focused attention in healthy young volunteers. J Psychopharmacol 2000; 14: 21–29.

    Article  CAS  PubMed  Google Scholar 

  71. Riedel WJ, Klaassen T, Deutz NEP, Van Someren A, Van Praag HM . Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology 1999; 141: 362–369.

    Article  CAS  PubMed  Google Scholar 

  72. Sobczak S, Riedel WJ, Booij L, Aan het Rot M, Deutz NEP, Honig A . Cognition following acute tryptophan depletion: difference between first-degree relatives of bipolar disorder patients and matched healthy control volunteers. Psychol Med 2002; 32: 503–515.

    Article  CAS  PubMed  Google Scholar 

  73. Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ . The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology 2002; 163: 42–53.

    Article  CAS  PubMed  Google Scholar 

  74. Hughes JH, Gallagher P, Young AH . Effects of acute tryptophan depletion on cognitive function in euthymic bipolar patients. Eur Neuropsychopharmacol 2002; 12: 123–128.

    Article  CAS  PubMed  Google Scholar 

  75. Porter RJ, Lunn BS, Walker LLM, Gray JM, Ballard CG, O’Brien JT . Cognitive deficit induced by acute tryptophan depletion in patients with Alzheimer's disease. Am J Psychiatry 2000; 157: 638–640.

    Article  CAS  PubMed  Google Scholar 

  76. Porter RJ, Marshall EF, O’Brien JT . Effects of rapid tryptophan depletion on salivary and plasma cortisol in Alzheimer's disease and the healthy elderly. J Psychopharmacol 2002; 16: 73–78.

    Article  CAS  PubMed  Google Scholar 

  77. Sjoerdsma A, Engelman K, Spector S . Inhibition of catecholamine synthesis in man with a-methyl-paratyrosine, an inhibitor of tyrosine hydroxylase. Lancet 1965; 2: 1092–1094.

    Article  CAS  PubMed  Google Scholar 

  78. Brodie HK, Murphy DL, Goodwin FK, Bunney WE . Catecholamines and mania: the effect of alpha-methyl-para-tyrosine on manic behavior and catecholamine metabolism. Clin Pharmacol Ther 1971; 12: 218–224.

    Article  CAS  PubMed  Google Scholar 

  79. Engelman K, Horwitz D, Jequier E, Sjoerdsma A . Biochemical and pharmacologic effects of alpha-methyltyrosine in man. J Clin Invest 1968; 47: 979–986.

    Google Scholar 

  80. Bunney WE, Brodie HKH, Murphy DL, Goodwin FK . Studies of alpha-methyl-para-tyrosine, L-dopa, and L-tryptophan in depression and mania. Am J Psychiatry 1971; 127: 872–881.

    Article  CAS  PubMed  Google Scholar 

  81. Brogden RN, Heel RC, Speight TM, Avery GS . Alpha-methyl-p-tyrosine: a review of its pharmacology and clinical use. Drugs 1981; 21: 81–89.

    Article  CAS  PubMed  Google Scholar 

  82. Shopsin B, Gershon S, Goldstein M, Friedman E, Wilk S . Use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacol Commun 1975; 1: 239–249.

    CAS  PubMed  Google Scholar 

  83. Delgado PL, Miller HL, Salomon RM, Licinio J, Heninger GR, Gelenberg AJ et al. Monoamines and the mechanism of antidepressant action: effects of catecholamine depletion on mood of patients treated with antidepressants. Psychopharmacol Bull 1993; 29: 389–396.

    CAS  PubMed  Google Scholar 

  84. Krahn LE, Lin SC, Klee GG, Lu PY, Ory SJ, Zimmermann RC . The effect of presynaptic catecholamine depletion on 6-hydroxymelatonin sulfate: a double blind study of alpha-methyl-para-tyrosine. Eur Neuropsychopharmacol 1999; 9: 61–66.

    Article  CAS  PubMed  Google Scholar 

  85. Miller HL, Delgado PL, Salomon RM, Heninger GR, Charney DS . Effects of alpha-methyl-para-tyrosine (AMPT) in drug-free depressed patients. Neuropsychopharmacology 1996; 14: 151–157.

    Article  CAS  PubMed  Google Scholar 

  86. Anand A, Darnell A, Miller HL, Berman RM, Cappiello A, Oren DA et al. Effect of catecholamine depletion on lithium-induced long-term remission of bipolar disorder. Biol Psychiatry 1999; 45: 972–978.

    Article  CAS  PubMed  Google Scholar 

  87. Miller HL, Delgado PL, Salomon RM, Berman R, Krystal JH, Heninger GR et al. Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch Gen Psychiatry 1996; 53: 117–128.

    Article  CAS  PubMed  Google Scholar 

  88. Delgado PL, Moreno FA, Onate L, Gelenberg AJ . Sequential catecholamine and serotonin depletion in mirtazapine-treated depressed patients. Int J Neuropsychopharmacol 2002; 5: 63–66.

    CAS  PubMed  Google Scholar 

  89. Berman RM, Narasimhan M, Miller HL, Anand A, Cappiello A, Oren DA et al. Transient depressive relapse induced by catecholamine depletion: potential phenotypic vulnerability marker? Arch Gen Psychiatry 1999; 56: 395–403.

    Article  CAS  PubMed  Google Scholar 

  90. Neumeister A, Turner EH, Matthews JR, Postolache TT, Barnett RL, Rauh M et al. Effects of tryptophan depletion vs catecholamine depletion in patients with seasonal affective disorder in remission with light therapy. Arch Gen Psychiatry 1998; 55: 524–530.

    Article  CAS  PubMed  Google Scholar 

  91. Lam RW, Tam EM, Grewal A, Yatham LN . Effects of alpha-methyl-para-tyrosine-induced catecholamine depletion in patients with seasonal affective disorder in summer remission. Neuropsychopharmacology 2001; 25: S97–S101.

    Article  CAS  PubMed  Google Scholar 

  92. Berman RM, Sanacora G, Anand A, Roach LM, Fasula MK, Finkelstein CO et al. Monoamine depletion in unmedicated depressed subjects. Biol Psychiatry 2002; 51: 469–473.

    Article  CAS  PubMed  Google Scholar 

  93. Longhurst JG, Carpenter LL, Epperson CN, Price LH, McDougle CJ . Effects of catecholamine depletion with AMPT (alpha-methyl-para-tyrosine) in obsessive-compulsive disorder. Biol Psychiatry 1999; 46: 573–576.

    Article  CAS  PubMed  Google Scholar 

  94. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 2000; 97: 7673–7675.

    Article  Google Scholar 

  95. Voruganti L, Slomka P, Zabel P, Costa G, So A, Mattar A et al. Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D2 binding ratios on SPECT imaging. Neuropsychopharmacology 2001; 25: 642–650.

    Article  CAS  PubMed  Google Scholar 

  96. Stine SM, Krystal JH, Petrakis IL, Jatlow PI, Heninger GR, Kosten TR et al. Effect of alpha-methyl-para-tyrosine on response to cocaine challenge. Biol Psychiatry 1997; 42: 181–190.

    Article  CAS  PubMed  Google Scholar 

  97. McCann UD, Thorne D, Hall M, Popp K, Avery W, Sing H et al. The effects of L-dihydroxyphenylalanine on alertness and mood in alpha-methyl-para-tyrosine-treated healthy humans. Neuropsychopharmacology 1995; 13: 41–52.

    Article  CAS  PubMed  Google Scholar 

  98. Laruelle M, D’Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL et al. Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 1997; 17: 162–174.

    Article  CAS  PubMed  Google Scholar 

  99. McCann UD, Penetar DM, Shaham Y, Thorne DR, Sing HC, Thomas ML et al. Effects of catecholamine depletion on alertness and mood in rested and sleep-deprived normal volunteers. Neuropsychopharmacology 1993; 8: 345–356.

    Article  CAS  PubMed  Google Scholar 

  100. McCann UD, Penetar DM, Belenky G . Acute dystonic reaction in normal humans caused by catecholamine depletion. Clin Neuropharmacol 1990; 13: 565–568.

    Article  CAS  PubMed  Google Scholar 

  101. Salomon RM, Miller HL, Krystal JH, Henninger GR, Charney DS . Lack of behavioral effects of monoamine depletion in healthy subjects. Biol Psychiatry 1997; 41: 58–64.

    Article  CAS  PubMed  Google Scholar 

  102. Verhoeff NP, Kapur S, Hussey D, Lee M, Christensen B, Papatheodorou G et al. A simple method to measure baseline occupancy of neostriatal dopamine D2 receptors by dopamine in vivo in healthy subjects. Neuropsychopharmacology 2001; 25: 213–223.

    Article  CAS  PubMed  Google Scholar 

  103. McCann UD, Penetar DM, Shaham Y, Thorne DR, Gillin JC, Sing HC et al. Sleep deprivation and impaired cognition. Possible role of brain catecholamines. Biol Psychiatry 1992; 31: 1082–1097.

    Article  CAS  PubMed  Google Scholar 

  104. Tychsen L, Sitaram N . Catecholamine depletion produces irrepressible saccadic eye movements in normal humans. Ann Neurol 1988; 25: 444–449.

    Article  Google Scholar 

  105. Zimmermann RC, Krahn L, Klee G, Lu PY, Ory SJ, Lin SC . The impact of gender on alpha-methyl-para-tyrosine mediated changes in prolactin secretion and 6-hydroxymelatonin sulfate excretion. Psychoneuroendocrinology 1996; 21: 469–478.

    Article  CAS  PubMed  Google Scholar 

  106. Zimmermann RC, Krahn L, Klee G, Delgado P, Ory SJ, Lin SC . Inhibition of presynaptic catecholamine synthesis with alpha-methyl-para-tyrosine attenuates nocturnal melatonin secretion in humans. J Clin Endocrinol Metab 1994; 79: 1110–1114.

    CAS  PubMed  Google Scholar 

  107. Zimmermann RC, Krahn L, Rahmanie N, Sauer MV . Prolonged inhibition of presynaptic catecholamine synthesis does not alter leptin secretion in normal-weight men and women. Hum Reprod 1998; 13: 822–825.

    Article  CAS  PubMed  Google Scholar 

  108. Fujita M, Verhoeff NP, Varrone A, Zoghbi SS, Baldwin RM, Jatlow PA et al. Imaging extrastriatal dopamine D2 receptor occupancy by endogenous dopamine in healthy humans. Eur J Pharmacol 2000; 387: 179–188.

    Article  CAS  PubMed  Google Scholar 

  109. Verhoeff NP, Hussey D, Lee M, Tauscher J, Papatheodorou G, Wilson AA et al. Dopamine depletion results in increased neostriatal D2, but not D1, receptor binding in humans. Mol Psychiatry 2002; 7: 322–328.

    Article  CAS  Google Scholar 

  110. Hindmarch I . Instrumental assessment of psychomotor functions and the effects of psychotropic drugs. Acta Psychiatr Scand Suppl 1994; 380: 49–52.

    Article  CAS  PubMed  Google Scholar 

  111. Schmitt JAJ, Ramaekers JG, Kruizinga MJ, Van Boxtel MPJ, Vuurman EFPM, Riedel WJ . Additional dopamine reuptake inhibition attenuates vigilance decrement induced by serotonergic reuptake inhibition in man. J Psychopharmacol 2002; 16: 207–214.

    Article  CAS  PubMed  Google Scholar 

  112. Loubinoux I, Pariente J, Boulanouar K, Carel C, Manelfe C, Rascol O et al. A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: double-blind, placebo-controlled, fMRI study in healthy subjects. Neuroimage 2002; 15: 26–36.

    Article  PubMed  Google Scholar 

  113. Biggio G, Porceddu ML, Gessa GL . Decrease of homovanillic, dihydroxyphenylacetic acid and cyclic-adenosine-3′,5′-monophosphate content in the rat caudate nucleus induced by the acute administration of an aminoacid mixture lacking tyrosine and phenylalanine. J Neurochem 1976; 26: 1253–1255.

    Article  CAS  PubMed  Google Scholar 

  114. Palmour RM, Ervin FR, Baker GB, Young SN . An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology 1998; 136: 1–7.

    Article  CAS  PubMed  Google Scholar 

  115. Fernstrom MH, Fernstrom JD . Acute tyrosine depletion reduces tyrosine hydroxylation rate in rat central nervous system. Life Sci 1995; 57: 97–102.

    Article  CAS  Google Scholar 

  116. Moja EA, Lucini V, Benedetti F, Lucca A . Decrease in plasma phenylalanine and tyrosine after phenylalanine–tyrosine free amino acid solutions in man. Life Sci 1996; 24: 2389–2395.

    Article  Google Scholar 

  117. McTavish SF, McPherson MH, Harmer CJ, Clark L, Sharp T, Goodwin GM, Cowen PJ . Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 2001; 179: 356–360.

    Article  CAS  PubMed  Google Scholar 

  118. Leyton M, Young SN, Blier P, Baker GB, Pihl RO, Benkelfat C . A comparison of the effects of acute tryptophan depletion and acute phenylalanine/tyrosine depletion in healthy women. Adv Exp Med Biol 1999; 46: 767–771.

    Google Scholar 

  119. Leyton M, Young SN, Pihl RO, Etezadi S, Lauze C, Blier P et al. Effects on mood of acute phenylalanine/tyrosine depletion in healthy women. Neuropsychopharmacology 2000; 22: 52–63.

    Article  CAS  PubMed  Google Scholar 

  120. Sheehan BD, Tharyan P, McTavish SFB, Campling GM, Cowen PJ . Use of a dietary manipulation to deplete plasma tyrosine and phenylalanine in healthy subjects. J Psychopharmacol 1996; 10: 231–234.

    Article  CAS  PubMed  Google Scholar 

  121. Eriksson T, Wiesel K, Voog L, Hagman M . Diurnal rhythms in rat plasma amino acids. Life Sci 1989; 45: 979–986.

    Article  CAS  PubMed  Google Scholar 

  122. Harmer CJ, McTavish SF, Clark L, Goodwinn GM, Cowen PJ . Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 2001; 154: 105–111.

    Article  CAS  PubMed  Google Scholar 

  123. Grevet EH, Tietzmann MR, Shansis FM, Hastenpflug C, Santana LC, Forster L et al. Behavioural effects of acute phenylalanine and tyrosine depletion in healthy male volunteers. J Psychopharmacol 2002; 16: 51–55.

    Article  CAS  PubMed  Google Scholar 

  124. Leyton M, Young SN, Blier P, Baker GB, Pihl RO, Benkelfat C . Acute tyrosine depletion and alcohol ingestion in healthy women. Alcohol Clin Exp Res 2000; 24: 459–464.

    Article  CAS  PubMed  Google Scholar 

  125. McTavish SFB, McPherson MH, Sharp T, Cowen PJ . Attenuation of some subjective effects of amphetamine following tyrosine depletion. J Psychopharmacol 1999; 13: 144–147.

    Article  CAS  PubMed  Google Scholar 

  126. McTavish SF, Raumann B, Cowen PJ, Sharp T . Tyrosine depletion attenuates the behavioural stimulant effects of amphetamine and cocaine in rats. Eur J Pharmacol 2001; 20: 115–119.

    Article  Google Scholar 

  127. Coupland N, Zedkova L, Sanghera G, Leyton M, Le Melledo JM . Response to pentagastrin after acute phenylalanine and tyrosine depletion in healthy men: a pilot study. J Psychiatry Neurosc 2001; 26: 247–251.

    CAS  Google Scholar 

  128. Nathan PJ, Harrison BJ, Olver JS, Norman TR, Burrows GD, Stough C . Depletion of serotonin vs dopamine produces double dissociation on tests of mnemonic function in healthy volunteers. Int J Neuropsychopharmacol 2002; 5: S191.

    Google Scholar 

  129. Montgomery AJ, Bhagwagar Z, McTavish SFB, Cowen PJ, Grasby PM . Pilot studies of the effect of dietary tyrosine depletion on [C-11]raclopride binding. Schizophrenia Res 2002; 53: S155.

    Google Scholar 

  130. Harrison BJ, Olver JS, Norman TR, Nathan PJ . Effects of serotonin and catecholamine depletion on interleukin-6 activation and mood in human volunteers. Hum Neuropsychopharmacol 2002; 17: 293–297.

    Article  CAS  Google Scholar 

  131. McTavish SFB, Callado L, Cowen PJ, Sharp T . Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 1999; 13: 379–384.

    Article  CAS  PubMed  Google Scholar 

  132. Beck AT, Rush AJ, Shaw BF, Emery G . Cognitive Therapy of Depression. Guilford Press: New York, 1979.

    Google Scholar 

  133. Miranda J, Gross JJ, Persons JB, Hahn J . Mood matters: negative mood induction activates dysfunctional attitudes in women vulnerable to depression. Cogn Ther Res 1998; 22: 363–376.

    Article  Google Scholar 

  134. Segal ZV, Gemar M, Williams S . Differential cognitive response to a mood challenge following successful cognitive therapy or pharmacotherapy for unipolar depression. J Abnorm Psychol 1999; 108: 3–10.

    Article  CAS  PubMed  Google Scholar 

  135. Van der Does AJW . Cognitive reactivity to sad mood: structure and validity of a new measure. Behav Res Ther 2002; 40: 105–120.

    Article  PubMed  Google Scholar 

  136. Van der Does AJW . Thought suppression and cognitive vulnerability to depression. Br J Clin Psychol (in press).

Download references

Acknowledgements

The Netherlands Organization of Sciences–Medical Sciences (NWO-MW) Grant 903-57-132 to Dr Van der Does facilitated the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Booij or A J W Van der Does.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booij, L., Van der Does, A. & Riedel, W. Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry 8, 951–973 (2003). https://doi.org/10.1038/sj.mp.4001423

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001423

Keywords

This article is cited by

Search

Quick links