Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24

Abstract

Schizophrenia is a complex neuropsychiatric disorder to which an as-yet-unknown number of genes contribute, interacting with each other and the environment. Linkage analyses have implicated several chromosomal regions as harboring schizophrenia susceptibility loci although rarely at levels commensurate with proposed thresholds for genome-wide significance. We systematically recruited Arab Israeli families multiply affected with schizophrenia from the catchment area of a Regional Mental Health Center. Clinical diagnoses were established by semistructured interviews and all other available sources of information under narrow, core and broad categories. Using 350 microsatellite markers, spaced at an average of 10.3 cM, we performed an autosomal scan in 155 subjects from 21 families. Linkage analysis employed affects only, multipoint, nonparametric (model-free) and also parametric (dominant and recessive) approaches. We detected significant evidence for a schizophrenia susceptibility gene at chromosome 6q23 with a nonparametric LOD score (NPL) of 4.60 (P=0.000004) under the broad diagnostic category and a parametric LOD score of 3.33 (dominant model). Under the core diagnostic category the NPL was 4.29 (P=0.00001) and the LOD score 4.16 (dominant model). We also detected suggestive evidence for linkage at chromosome 10q24 under the broad diagnostic category (NPL 3.24, P=0.0008; heterogeneity LOD score, dominant model 2.65, α=0.82). Additionally, NPL scores >2.0 were observed at chromosome 2q37, 4p15–16, 7p22, 9q21–22 and 14q11.1–11.2. The linkage we detected at chromosome 6q23 fulfills the criteria for genome-wide significance and is located approximately midway between loci suggested by a previous significant report at chromosome 6q25 and findings located more centromerically at 6q21–22.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Baron M . Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 2001; 68: 299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kohn Y, Lerer B . Genetics of schizophrenia: a review of linkage findings. Isr J Psychiatry Rel Sci 2002; 39: 240–321.

    Google Scholar 

  3. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  4. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaber L, Bailey-Wilson JE, Haj-Yehia M, Hernandez J, Shohat M . Consanguineous matings in an Israeli-Arab community. Arch Pediatr Adolesc Med 1994; 148: 412–415.

    Article  CAS  PubMed  Google Scholar 

  8. Jaber L, Halpern GJ, Shohat T . Trends in the frequencies of consanguineous marriages in the Israeli Arab community. Clin Genet 2000; 58: 106–110.

    Article  CAS  PubMed  Google Scholar 

  9. Spitzer R, Endicott J (eds.) The Schedule for Affective Disorders and Schizophrenia, Lifetime Version, 3rd edn. New York State Psychiatric Institute: New York, 1977.

    Google Scholar 

  10. Andreasen NC, Endicott J, Spitzer RL, Winokur G . The family history method using diagnostic criteria: reliability and validity. Arch Gen Psychiatry 1977; 34: 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  11. Spitzer RL, Endicott J, Robins E . Research diagnostic criteria: rationale and reliability. Arch Gen Psychiatry 1978; 35: 773–782.

    Article  CAS  PubMed  Google Scholar 

  12. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  13. Baron M, Endicott J, Lerer B, Loth JE, Alexander JR, Simon R et al. A pedigree series for mapping disease genes in bipolar affective disorder: sampling, assessment and analytic considerations. Psychiatr Genet 1994; 4: 43–55.

    Article  CAS  PubMed  Google Scholar 

  14. Ewen KR, Bahlo M, Treloar SA, Levinson DF, Mowry B, Barlow JW . Identification and analysis of error types in high-throughput genotyping. Am J Hum Genet 2000; 67: 727–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gudbjartsson DF, Jonasson K, Frigge ML, Kong A . Allegro, a new computer program for multipoint linkage analysis. Nat Genet 2000; 25: 12–13.

    Article  CAS  PubMed  Google Scholar 

  16. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Whittemore AS, Halpern J . Problems in the definition, interpretation, and evaluation of genetic heterogeneity. Am J Hum Genet 2001; 68: 457–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodge SE, Vieland VJ, Greenberg DA . HLODs remain powerful tools for detection of Linkage in the presence of genetic heterogeneity. Am J Hum Genet 2002; 70: 556–557.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kong A, Cox NJ . Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61: 1179–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  21. Cardon LR, Bell JI . Association study designs for complex traits. Nat Rev Genet 2001; 2: 91–99.

    Article  CAS  PubMed  Google Scholar 

  22. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Crzvchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43: 1–8.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez M, Goldin LR, Cao Q, Zhang J, Sanders AR,, Nancarrow DJ et al. Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q. Am J Med Genet 1999; 88: 337–343.

    Article  CAS  PubMed  Google Scholar 

  24. Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet 2000; 67: 652–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R et al. Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology 2000; 42: 175–182.

    Article  CAS  PubMed  Google Scholar 

  27. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS . Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999; 65: 876–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  30. Mowry BJ, Ewen KR, Nancarrow DJ, Lennon DP, Nertney DA, Jones HL et al. Second stage of a genome scan of schizophrenia: study of five positive regions in an expanded sample. Am J Med Genet 2000; 96: 864–869.

    Article  CAS  PubMed  Google Scholar 

  31. Ewald E, Flint TJ, Jorgensen TH, Wang AG, Jensen P, Vang M et al. Search for shared segment on chromosome 10q26 in patients with bipolar affective disorder or schizophrenia from the Faroe Islands. Am J Med Genet 2002; 114: 196–204.

    Article  PubMed  Google Scholar 

  32. Cichon S, Schmidt-Wolf G, Schumacher J, Muller DJ, Hurte M, Schulze TG et al. A susceptibility locus for bipolar affective disorder in chromosomal region 10q25–q26. Mol Psychiatry 2001; 6: 342–349.

    Article  CAS  PubMed  Google Scholar 

  33. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnicki AD, Remick RA et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 2001; 98: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  35. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 290–295.

    Article  CAS  PubMed  Google Scholar 

  36. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  37. Akel M, Masarwi UJ . Taibe Bani Saab: Past Present and Future. The Center for Arab Culture and Development, Alrama Publications: Israel, 1989, pp 51–78.

    Google Scholar 

  38. Israel Central Bureau of Statistics. Census of Population and Housing. Publication No. 10. Israel Central Bureau of Statistics: Jerusalem, 1961.

  39. Israel Central Bureau of Statistics. Census of Population and Housing. Publication No. 5. Israel Central Bureau of Statistics: Jerusalem, 1972.

  40. Israel Central Bureau of Statistics. Census of Population and Housing. Publication No. 7(1). Israel Central Bureau of Statistics: Jerusalem, 1995.

  41. Jaber L, Merlob P, Bu X, Rotter JI, Shohat M . Marked parental consanguinity as a cause for increased major malformations in an Israeli Arab community. Am J Med Genet 1992; 44: 1–6.

    Article  CAS  PubMed  Google Scholar 

  42. Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D et al. Genetic analysis of case/control data using estimated haplotype frequencies: application to APO-E locus variation and Alzheimer's disease. Genome Res 2001; 11: 143–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsuang MT . ‘Schizoaffective disorder’: dead or alive? Arch Gen Psychiatry 1979; 36: 633–634.

    Article  CAS  PubMed  Google Scholar 

  44. Gershon ES, DeLisi LE, Hamovit J, Nurnberger Jr JI, Maxwell ME, Schreiber J et al. A controlled family study of chronic psychoses. Schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 1988; 45: 328–336.

    Article  CAS  PubMed  Google Scholar 

  45. Berrettini WH . Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 2000; 48: 531–538.

    Article  CAS  PubMed  Google Scholar 

  46. Pulver AE, Mulle J, Nestadt G, Swartz KL, Blouin JL, Dombroski B et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry 2000; 5: 650–653.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by internal funds from Hadassah Medical Organisation and by the German Israeli Foundation for Scientific Research (to BL). FM, NARSAD 2001 Essel Investigator, was partially supported by an Investigator Initiated Grant from the National Alliance for Research on Schizophrenia and Depression (NARSAD), USA. The Biological Psychiatry Laboratory, Hadassah—Hebrew University Medical Center, is supported by the Harry Stern Family Foundation. The authors are indebted to the late Mrs Blanche Stern Prince and to Dr Morton Prince for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerer, B., Segman, R., Hamdan, A. et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry 8, 488–498 (2003). https://doi.org/10.1038/sj.mp.4001322

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001322

Keywords

This article is cited by

Search

Quick links